
Managing certificates

Introduction
Provided certificates and keystores
Using certificates using the provided CA or your own CA

Step 1: set the CA to use when signing your certificates
Use the provided CA
Let the tool generate a new CA
Use your own CA

Step 2: generate the certificates and keystores
Step 3: copy the generated files to the user-content folder
Step 4: continue with your installation

Using certificates signed by a trusted CA
Step 1: create a CSR (Certificate Signing Request)
Step 2: create the java keystore
Step 3: continue with your installation

Using certificates provided by your organization
Step 1: verify files format
Step 2: backup provided files
Step 3: generate java keystore and truststore
Step 4: copy the generated files to the user-content folder
Step 5: continue with your installation

Adding the provided or a custom CA to Kiuwan On-Premises' clients

Introduction
Kiuwan On-Premises fosters secure connections by providing a default installation environment where
most communications are done under a secure protocol.

By default, Kiuwan On-Premises service connections use:

Communication between Protocol Secure connection

Any client (browser, KLA, K4D,
custom REST API client, etc.)

Kiuwan
apache load
balancer

HTTPS Yes

Kiuwan apache load balancer Kiuwan
(frontal)

HTTPS Yes

Kiuwan (frontal, analyzer,
scheduler, updater)

MySQL
database

MySQL protocol (SSL
can be optionally
enabled)

Optional

Kiuwan (frontal, analyzer,
scheduler, updater)

Redis cluster
node

RESP (REdis
Serialization Protocol) +
SSL

Optional (only supported
when using AWS
elasticache)

Redis cluster node Redis cluster
node

RESP (REdis
Serialization Protocol)

Optional (only supported
when using AWS
elasticache)

Every time a client connects to a server using a secure protocol, it needs to make sure that the contacted
server is who it claims to be. This is usually done by the server returning a certificate (signed by a
Certification Authority, CA) that the client can check for authenticity.

As the client needs a way to identify if the server's certificate is trustable, all secure transmision enabled
clients have or rely on a dictionary of trustable CAs.

In order to provide a default installation configuration that enables secure protocols on most
communications channels, Kiuwan On-Premises comes with a set of certificates and keystores for the
default configured domain (kiuwan.onpremise.local).

Provided certificates and keystores
Kiuwan On-Premises installation tool (kiuwan-cluster) provides a number of files to allow secure
communications between containers. These files are located in kiuwan-cluster distributions under the ssl
folder.

Note that the previous statement means that, if you rely on the default installation
configuration, all your certificates will be the same as other Kiuwan customers certificates. We
encourage you to create your own CA for signing your own domain certificates or sending a
CSR to a trusted CA. See the following sections for more information on this topic.

The following table shows the provided certificate files:

Location File Public
key
algorithm

Key
format

File
encoding

Signature
algorithm

Content Purpose Expiration
date

ssl/ca cacert.
pem

RSA 4096
bits

X.509 PEM SHA256 with
RSA

The CA
certificate
that signed
Kiuwan On-
Premises
domain
certificate

Allows
Kiuwan
servers to
provide the
CA that
signed their
certificates

2029/10/13

ssl/kiuwan.
onpremise.
local

domain
cert.
pem

RSA 4096
bits

X.509 PEM SHA256 with
RSA

The
Kiuwan On-
Premises
domain
certificate

Allows
Kiuwan
servers to
identify
themselves

2029/10/13

The following table shows the provided private key files:

Location File Private
key
algorithm

Key
format

File
encoding

Content Purpose

ssl/ca cakey.
pem

RSA 4096
bits

PKCS#1 PEM The provided CA
private key
(password protected)

Allows signing
certificates with the
provided CA

ssl/kiuwan.
onpremise.
local

domain
key.
pem

RSA 4096
bits

PKCS#1 PEM The Kiuwan On-
Premises domain
private key

Allows encrypting
traffic for the
provided domain

The following table shows the provided Java keystore files:

Location File Content Purpose

ssl/kiuwan.
onpremise.
local

domai
nkeyst
ore.jks

This keystore contains cacert.pem, domaincert.
pem and domainkey.pem files. Its password is the
one provided in the default installation
configuration (see java.keystore.password
property).

Allows Kiuwan instances to identify
themselves and encrypt traffic to
enable secure connections.

ssl/kiuwan.
onpremise.
local

trustst
ore.jks

This keystore contains all the CA certificates
included in the OpenJDK default truststore (see
next row in this table) plus the provided CA
certificate. Its password is the one provided in the
default installation configuration (see java.
truststore.password property).

Allows Kiuwan instances to
communicate to external servers that
offer certificates signed by trusted
CAs (needed both for AWS based
installations and Kiuwan central
servers communications).

ssl
/truststore

trustst
ore.jks

This keystore contains the OpenJDK 13 trusted
CAs as of 2019/10/16. Its password is the one
provided by OpenJDK for its cacerts file.

Allows generating a custom
truststore that includes most needed
trusted CAs certificates plus the one
provided by the installation tool.

Using certificates using the provided CA or your
own CA
Kiuwan On-Premises installer (kiuwan-cluster) contains a handy tool to create certificates both with the
provided CA or your own CA.

The tool is a bash script located here:

[INSTALLER_DIR]/ssl/kiuwan-certool.sh

Remember that, as stated in , you will need the specified Installation guide - Installation requirements
versions of a JRE and OpenSSL in order to be able to generate certificates using the provided tool.

When generating custom certificates, it is recommended that you change the default properties in the
configuration file located here:

[INSTALLER_DIR]/ssl/config/certs.properties

This is what the customizable properties of the previous file (default passwords are ommited) mean:

Property Default
value

Meaning

https://www.kiuwan.com/docs/display/K5/Kiuwan+On-Premises+Distributed+Installation+Guide#KiuwanOnPremisesDistributedInstallationGuide-Installationrequirements

java.
keystore.
password

The password to set to the generated Java keystore.

java.
truststore.
password

The password to set to the generated Java truststore.

ssl.ca.
password

The password to set to the generated CA (only applies when
generating a new custom CA). The set password will be used when
signing certificates as well.

ssl.country US Country, state, locality, organization or organization unit to set both to
the subject of the CA certificate (in case of you are generating a new
custom CA) and to the subject of the specified domain signing request.ssl.state mystate

ssl.locality mylocality

ssl.
organization

mycompany

ssl.
organizatio
n.unit

myorganizatio
nunit

ssl.
company.
domain

mycompany.
com

Company domain to set to the subject's Common Name (CN) of the CA
certificate (in case of you are generating a new custom CA).

ssl.subject.
alt.names

DNS:kiuwan.
onpremise.
local[:443,:
3306,:6379]

DNS:
wildflykiuwan-
f[1-2][:8143,:
8443]

DNS:
wildflykiuwan
Container-f[1-
2][:8143,:
8443]

DNS:
mysqlkiuwan[:
3306]

DNS:
mysqlkiuwan
Container[:
3306]

DNS:
redis_0000[1-
6][:6379]

Subject Alternative Names (SANs) that will be set to the specified
domain certificate. These are needed in order to be able to share the
same certificate between different services of the Kiuwan On-Premises
infrastructure.

Step 1: set the CA to use when signing your certificates

The provided tool will use the CA files located here:

[INSTALLER_DIR]/ssl/ca/cacert.pem
[INSTALLER_DIR]/ssl/ca/cakey.pem

You can either:

Use the provided CA.
Let the tool generate a new CA.
Use your own CA.

Use the provided CA

Just continue to .Step 2: generate the certificates and keystores

Let the tool generate a new CA

If you have modified the default ports, you must set the new
ports to these properties and create new certificates. See Mo

 section for more details.difying exposed ports

https://www.kiuwan.com/docs/display/K5/Advanced+installation+topics#Advancedinstallationtopics-Modifyingexposedports
https://www.kiuwan.com/docs/display/K5/Advanced+installation+topics#Advancedinstallationtopics-Modifyingexposedports

Just backup the provided CA files and a new CA will be automatically generated:

cd [INSTALLER_DIR]/ssl/ca
mv cacert.pem cacert.pem.bak
mv cakey.pem cakey.pem.bak

Use your own CA

Just replace the provided files with your own CA's ([INSTALLER_DIR]/ssl/ca/cacert.pem and
[INSTALLER_DIR]/ssl/ca/cakey.pem).

We recommend backing up the provided CA files just in case you want to get back to the provided
defaults (see).Use your own CA

Step 2: generate the certificates and keystores

To generate all the needed files using the provided CA and the default configuration, just run the
following commands:

cd [INSTALLER_DIR]/ssl
./kiuwan-certool.sh [DOMAIN_NAME]

This will create the following files under the ssl/[DOMAIN_NAME] folder:

domaincert.pem
domainkey.pem
domainkeystore.jks
truststore.jks

Step 3: copy the generated files to the user-content folder

You can run the following commands to automatically copy the needed files to the user-content folder,
where the installer tool deploy-user-content.sh will read from when deploying the user content to the
persistent volumes locations:

cd [INSTALLER_DIR]/ssl
./kiuwan-cercopy.sh [DOMAIN_NAME]

Step 4: continue with your installation

The following step is to run the deploy-user-content.sh script to let the installer deploy your certificates to
the persistent volumes. Note that once this is done and depending on your installation needs, the
following steps may change. Please refer to the page Kiuwan On-Premises Distributed Installation Guide
for more information.

Using certificates signed by a trusted CA
Note that the Kiuwan On-Premises installation tool does not automate this process as it may be different
between organizations based on their security policies.

The following table shows the files that Kiuwan On-Premises needs:

File Where does it
come from?

How can I get it?

domainkey.
pem

You have to
generate this file

Use a SSL tool to generate it

cacert.pem Your CA will provide
this file

Your CA will send this file to you after a CSR (Certificate
Signing Request) has been fulfilled

domaincert.
pem

Your CA will provide
this file

Your CA will send this file to you after a CSR (Certificate
Signing Request) has been fulfilled

https://www.kiuwan.com/docs/display/K5/Kiuwan+On-Premises+Distributed+Installation+Guide

1.
2.
3.
4.

a.
b.

1.
2.

a.
b.
c.

domainkeyst
ore.jks

You have to
generate this file

Use your JRE's keytool program to generate it

truststore.jks Provided by the
installation tool

It is stored in [INSTALLER_DIR]/ssl/truststore/truststore.jks

Here are the usual steps to follow when requesting a CA to create a certificate for your domain. Most of
them can be carried out using OpenSSL (but there are other alternative tools available).

Step 1: create a CSR (Certificate Signing Request)

Follow these steps:

Create a private key file ().domainkey.pem
Create a certificate signing request (CSR) file using the keyfile from the previous step.
Send the CSR file to your trusted CA for signing.
Store the files sent by your trusted CA:

The CA certificate ().cacert.pem
Your domain certificate ().domaincert.pem

Step 2: create the java keystore

At this point you will need three files. Your private key and those sent by your CA:

Create a pkcs12 file using the CA certificate, your private key file and your domain certificate.
Create a Java keystore () that:domainkeystore.jks

Contains both the CA certificate and your domain's certificate.
Its format is pkcs12.
Has an alias "domainp12" for your domain's certificate.

Once you have all the needed files (remember that you can use the provided file), copy truststore.jks
them to:

[INSTALLER_DIR]/user-content/certs

Step 3: continue with your installation

The next step is to run the deploy-user-content.sh script to let the installer deploy your certificates to the
persistent volumes. Note that once this is done, depending on your installation needs, the following steps
may change. Please refer to the page for more Kiuwan On-Premises Distributed Installation Guide
information.

Using certificates provided by your organization
If your organization manages their own certificates, you should send a requirement for the domain where
your Kiuwan On-Premises installation will be accessible from. You should indicate that this domain
should match the CN set in the generated certificate. You should receive these files from the department
responsible for generating the certificate files:

The public certificate of your organization's CA (cacert.pem).
The public certificate for Kiuwan On-Premises domain (domaincert.pem).
The private key of your Kiuwan On-Premises domain certificate (domainkey.pem).

Note that the previous files may have different names depending on your oganization's naming policies.

Step 1: verify files format

Depending on how your organization creates their certificates, your files may have a format not
supported by the installation tool.

All provided certificates MUST be in PEM format. Please refer to Provided certificates and keystores
section for more details.

In case your company generates generic certificates whose CN do not match the required
domain, you should update your front-end server configuration to avoid validating the CN of
the certificate against the accessed hostname. For the provided Apache load balancer, just
set the directive "SSLProxyCheckPeerCN" to "off" in the httpd.conf file located under
[VOLUMES_DIR]/shared-conf/ApacheLoadBalancer/conf.

https://www.kiuwan.com/docs/display/K5/Kiuwan+On-Premises+Distributed+Installation+Guide

In case you have received the certificate files in a different format, you should convert the files to PEM
format.

Once the files have been converted and renamed, you should end up with three files:

cacert.pem
domaincert.pem
domainkey.pem

Step 2: backup provided files

In order to avoid confussion, rename folder where the provided files reside to keep them separated from
the ones you have already prepared:

cd [INSTALL_DIR]/ssl
mv ca kiuwanca

Step 3: generate java keystore and truststore

Copy your cacert.pem file to the ca folder:

cd [INSTALL_DIR]/ssl
mkdir ca
cp cacert.pem [INSTALL_DIR]/ssl/ca

Then put the domain files into a folder named as your domain:

cd [INSTALL_DIR]/ssl
mkdir [DOMAIN_NAME]
cp domaincert.pem [INSTALL_DIR]/ssl/[DOMAIN_NAME]
cp domainkey.pem [INSTALL_DIR]/ssl/[DOMAIN_NAME]

Invoke the kiuwan-certool.sh script to generate the needed java stores:

cd [INSTALL_DIR]/ssl
./kiuwan-certool.sh [DOMAIN_NAME]

This will create the missing jks files into the [DOMAIN_NAME] folder.

Step 4: copy the generated files to the user-content folder

You can run the following commands to automatically copy the needed files to the user-content folder,
where the installer tool deploy-user-content.sh will read from when deploying the user content to the
persistent volumes locations:

cd [INSTALLER_DIR]/ssl
./kiuwan-cercopy.sh [DOMAIN_NAME]

Step 5: continue with your installation

The following step is to run the deploy-user-content.sh script to let the installer deploy your certificates to
the persistent volumes. Note that once this is done and depending on your installation needs, the
following steps may change. Please refer to the page Kiuwan On-Premises Distributed Installation Guide
for more information.

Adding the provided or a custom CA to Kiuwan On-
Premises' clients

https://www.kiuwan.com/docs/display/K5/Kiuwan+On-Premises+Distributed+Installation+Guide

The Kiuwan On-Premises installer provides default certificates for the default host name, signed by a
supplied CA (Certificate Authority).

The CA public certificate is provided in this file:

[INSTALLER_DIR]/ssl/ca/cacert.pem

If you choose to sign your domain's certificate with the provided CA, a new CA created using kiuwan-
certool.sh or your own CA, internet browsers and other clients accessing your Kiuwan On-Premises
installation will not recognize it as a trusted CA by default. You will get error messages like this one:

Your connection is not private
Attackers might be trying to steal your information from kiuwan.onpremise.
local (for example, passwords, messages, or credit cards).
NET::ERR_CERT_AUTHORITY_INVALID

This is the expected behavior as the CA store that your browser or client uses will not contain your own
CA or the one supplied along with kiuwan-cluster.

In order to make your browser trust the supplied certificates, you will need to add this CA to your
browser, and Java clients that access your Kiuwan On-Premises installation:

Fixefox, Chrome, Edge: import cacert.pem by using the tools provided by the browsers.
Java clients (Kiuwan for developers Eclipse, Kiuwan for developers JetBrains, Jenkins plugin,
KLA, etc): add the provided cacert.pem to the JRE keystore used by the client. Please refer to
the official documentation of your JRE distribution about the Java keytool program.
Windows clients (Kiuwan for developers VisualStudio): import cacert.pem by using the tools
provided by Windows (certmgr.msc).
Multiplatform clients (Kiuwan for developers VisualStudioCode): import cacert.pem by using the
tools provided by your OS.

	Managing certificates

