
A Security Guide for

Developers

I
N
D
E
X

Overview..1

Invalid or Unsanitized Input......................................2

Injection Risks During Output...................................3

Unsound Authentication Policy and Password
Management..5

Insufficient Error Handling Practices and Logging
Policy...6

Lacking Data Protection Measures...........................7

Security Considerations for Go vs. Other
Languages...9

Protect Your Go Programs with Kiuwan...................10

1

In the 2020 and 2021 Stack Overflow annual Developer
Survey, the Go language reached the top five most
loved programming languages, joining the likes of Rust,
Typescript, Python, and Kotlin. With the surge of
popularity that Go has been enjoying in recent years,

Kiuwan | Security Guide for Go Developers

Over v ie w

it’s being increasingly used for projects that are becoming the building blocks of future digital
infrastructure. The container management system Kubernetes is one such example. According to the
Cloud Native Computing Federation, Kubernetes is used by nearly one-third of all backend developers —
that’s nearly 5.6 million people.

Go — the shortened nomenclature for Golang — has been described as a programming language that
helps companies more easily execute their missions by focusing on the problems they want to solve as
opposed to the tools they want to use. Much of the praise comes from the strength of its simplicity.
Indeed, it’s also one of the most in-demand languages that developers want to learn.

Go is on an upwards trajectory and will remain so for the foreseeable future. That means for companies
looking to leverage the programming language to its fullest potential, they need to understand the nuts
and bolts of its important facets, such as how it fares in terms of application security (appsec). Does Go
have more or less security vulnerabilities compared to other popular languages? Is it easier to manhandle
into appsec policies and standards, or is it harder?

While this Go security guide may not be exhaustive, it serves to highlight some of the most common
security vulnerabilities developers should keep an eye out when programming with Go. It also touches on
the differences between Go and other popular languages in terms of security, taking a look at the cost of
slacking in appsec.

This guide will explore the following most common risks when developing in Go:

• Invalid or Unsanitized Input
• Injection Risks During Output
• Unsound Authentication Policy and Password Management
• Insufficient Error Handling Practices and Logging Policy
• Lacking Data Protection Measures

https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://insights.stackoverflow.com/survey/2020#technology-most-loved-dreaded-and-wanted-languages-loved
https://virtualizationreview.com/articles/2022/01/04/cloud-native-development.aspx#:~:text=Kubernetes%20is%20used%20by%2031,in%20the%20last%2012%20months
https://www.linkedin.com/pulse/rise-golang-james-full/

2Kiuwan | Security Guide for Go Developers

Validating inputs from users helps avoid opening up the system to attackers who send intrusive
information, and, of course, it helps with functionality as well. Standardization of input validation also
helps users become more confident by avoiding simple mistakes that may have disastrous
consequences. Left unchecked, user input and any associated information can easily become an appsec
concern. This potential threat is addressed via input validation and sanitization. Ideally, these are
performed at every part of an application if the function of the server permits such.

Invalid or Unsanitized Input

As applications become richer and more complex,
so too do their user interaction requirements and the
amount of submitted data that’s processed. This
translates to more potential pitfalls when it comes to
input validation and sanitization.

Generally, validation procedures must be performed on
trusted systems, and consist of three general checks:
validation, post-validation, and sanitization.

For input validation, developers should have these checks in place:

• Validation of every user input and user interactivity — whenever an application allows
user input, it’s a potential threat. Not only can malicious actors mislead users into
compromising the application, but they can also take advantage of human error to gain an
initial foothold through an inadvertent vulnerability.

For programming in Go, when dealing with strings, packages such as strconv and strings
are applied to handle conversions to other data types. Furthermore, Go also supports
regular expressions like utf8 and regexp for complex validations. Users may also rely
on third-party packages that include easier validations for individual fields or structs —
though take note that not only does Go prefer native libraries, strict security protocols may
strictly dictate third-party package use.

• Validation during every file manipulation — Every time file usage is required (i.e. a file
is read or written), validation checks should be in place to ensure that file manipulation
operations that deal with user information are handled correctly.

• Validation of data sources — Every time information is passed from one trusted source to
somewhere less trusted, there should be integrity checks in place such as cross-system
consistency checks, referential integrity checks, and hash totals.

https://blog.sqreen.com/top-6-security-best-practices-for-go/

3Kiuwan | Security Guide for Go Developers

Within post-validation, there are actions that vary depending on context and are generally split into three
categories:

Injection Risks During Output

Enforcement actions – These actions are meant to better
secure data and applictions. These actions include:

• Informing users that they should modify data input as it
failed to comply with requirements

• Modifying input data to comply with requirements without
user notification

Advisory actions – One level down from enforcement actions,
advisory actions allow unchanged data to be submitted, but
informs the source actor that the issues were detected with the
input.

Verification actions – Special cases within advisory actions
occur when users submit data and are then asked by the source
actor to verify the information. The source actor may also
suggest changes. The user then decides to keep the original input
or implement the suggestions.

In terms of sanitization, it’s simply the process of replacing or removing submitted data. Even after
proper validation checks, input data should still go through sanitization as an additional step to further
strengthen appsec.

In web application development, poor output encoding practices are, unfortunately, rampant. These
undesirable practices multiply the risks associated with web apps becoming more complex and
increasing amounts of data sources — from more users to additional databases and integrations of
third-party services. At some point, collected data will be outputted to some media with specific
context. And in that instance, injections can compromise applications without robust output encoding
policy.

For Golang, two injections are particularly pesky: cross-scripting (XSS) and SQL injections.

4Kiuwan | Security Guide for Go Developers

An XSS attack exploits the capability to inject malicious code to
modify output. These attacks occur when unfiltered strings are sent
back to a web client, usually through the text/template package or
io.WriteString(). A common example would be a threat actor sending
JavaScript code as part of a query string in a URL, which is then
executed once the app returns the user’s value. This exploit exists
because HTML tags in the returned strings will be rendered without
encoding to the output stream, so they may be incorrectly defined as a
plain/text response header content-type — unless it is explicitly set
otherwise.

Fortunately, Go offers the html/template package to encode what apps return to users. It’s just a matter
of enforcing output encoding policy to encourage best practices in coding. If required, there are also
third-party libraries that help with encoding authentication cookie values, for example.

An SQL injection, on the other hand, typically stems from yet another
bad practice: poor string concatenation. SQL injection usually
happens when variables holding values that may include arbitrary
characters assigned special meaning to the app database are added to
partial SQL queries. SQL injections are a common vulnerability across
many programming languages.

However, within Go, there are specific considerations, such as making
sure users connecting to the database are given limited permissions.
Of course, input sanitization is also highly recommended. Developers
can also foolproof their apps by using the HTMLEscapeString function
in the HTML template package to escape special characters.

By far, the most critical solution to this conundrum, of course, is the use of parameterized queries. In Go,
you prepare statements on the database, not in a connection.

In case the database engine doesn’t fully support the use of prepared statements or their involvement
somehow affects query performance, users can employ the db.Query() function in conjunction with
robust input sanitization measures.

Finally, third-party libraries can prevent SQL injections, e.g. sqlmap.

5Kiuwan | Security Guide for Go Developers

Authentication and password policy and management are critical for all
applications and systems, and they’re often governed by detailed specs
in terms of everything from user signup to storage of credentials to
resetting passwords. Programming in Go is no exception.

The general rules of thumb precede specific steps:

• All authentication controls need to be enforced on a trusted system
• Only standard and proven authentication services should be utilized to not only simplify the

system but also to reduce possible points of failure
• Code sanitization is a must: closely inspect code for malicious parts
• Resources that need to undergo authentication should not perform it on themselves —

ideally, the system can redirect to and from centralized authentication control
• Both users and the application itself should be able to use authentication to ensure that

connection to external systems can also be authenticated without manual work

In terms of Go-specific steps, the strict use of HTTPS comes first to mind. Most contemporary
browsers require HTTPS on every website — Chrome, for instance, alerts users if websites aren’t on
HTTPS. If possible, the same should be done throughout an application, e.g. it should be standard appsec
policy to enforce in-transit encryption when two services communicate. This means encryption
connections from specific ports as well as utilizing proper certificates to enforce HTTP, lest threat
actors downgrade the protocol and open up vulnerabilities.

In line with this, all authentication credentials should be sent only through HTTPS encrypted channels.
Some exceptions can be reviewed, such as email reset requests for temporary passwords.

When applications handle authentication errors, they should not reveal which part of the authentication
data failed the checks. For example, application error messages should say “invalid username or
password” instead of specifying which was incorrect.

To further this practice, users should be informed about the last successful and unsuccessful dates of
access after successfully logging in. This helps them more easily identify suspicious activity. To prevent
timing attacks, it wouldn’t hurt to use constant time comparison functions when checking passwords.

Unsound Authentication Policy
and Password Management

6Kiuwan | Security Guide for Go Developers

A final word on sensitive information management: encrypt, encrypt, encrypt. Note that a string in
base-64 format, for example, is only hard to read — it doesn’t necessarily mean its hidden value is kept
secret. Successful encryption means hiding information in a way that cannot be easily decoded. For Go,
some recommended encryption algorithms include scrypt, bcrypt, PDKDF2, or Argon2. Use these to
heavily encrypt information such as passwords (for users and databases) and other confidential
information.

For the strictest security measures, refrain from using third-party crypto packages outside of Go’s
standard ones. Go’s crypto packages are well-audited and native, and thus will work well with any security
process and management standards and policies you set up without needing additional scrutiny.

Insufficient Error Handling Practices
and Logging Policy
Robust and comprehensive standards, processes, and policies should also govern the error handling and
logging in golang applications. Logging, especially, may often be overlooked particularly from an appsec
perspective, but like error handling, it’s an essential part of protecting application and infrastructure.

Error handling refers to errors in application logic that may
cause system crashes unless handled properly. Systems
should not reveal too much information about the error to
users, as these may then be used by attackers to make
useful inferences, such as what technologies or services
are being used. In Golang, there are no exceptions — errors
are handled differently compared to other languages, and
this naturally affects security considerations in error handling.

Furthermore, there are additional error handling functions in Go that allow for the recovery of an
application instead of an unrecoverable failure. These functions should also be taken into consideration.

Logging is the reporting of operation highlights and requests that occurred in-system. By its very nature,
logging lets users identify operations that have occurred. Likewise, it often indicates what actions are
required to protect the application. This is why threat actors often try to delete logs to clear their tracks.
This, in turn, is why logs are best centralized.

Go actually offers a native library to work with logs. Unfortunately, Go’s log package “implements simple
logging” according to its documentation, so expect it to fall short of some common and important
features such as leveled logging and formatters support. Users will have to implement additional logging
functions to make logs usable via integration, for example, with Security Information and Event
Management systems.

7Kiuwan | Security Guide for Go Developers

Error logs, like error notifications, should not disclose too much sensitive information. Internal policy
should also ensure that error handlers don’t inadvertently leak critical data such as stack trace or debug-
ging information.

As best practice, logging should be handled by the application. It should not rely on a server
configuration. Ideally, logging is implemented by a master routine within a trusted system, with all
sensitive information like session data, system details, and passwords dutifully scrubbed. Logging should
also be enabled for both successful and unsuccessful security events.

How effective a company’s Golang security measures will be depends on the data protection measures
they enforce. While there are generally adopted best practices that span every programming language,
there are Golang-specific considerations that need to be factored in for companies developing
applications in the language.

Among the foremost priorities when it comes to data protection measures for Golang is the creation
and implementation of the proper privileges for each user which then restrict them to only the functions
required by their role. To better illustrate this point, consider the following users in an online store and
their function limitations:

Lacking Data Protection Measures

In addition, organizations should also define proper permissions in the web server.

After the priority step of managing permissions, company appsec policy should turn to the removal of
sensitive information in temporary and cache files as soon as they are no longer required. In case of
prolonged use, these temporary files should be encrypted or moved to protected areas — ideally both.

8Kiuwan | Security Guide for Go Developers

In line with error handling and logging measures discussed above, developer comments should also be
governed to ensure programmers are not divulging too much information. Sometimes programmers are
prone to leaving to-do lists in code comments, at worst leaving credentials for easier access at a future
time.

Data protection measures should also be reinforced when passing sensitive information between
sources, especially when using the HTTP GET method. This method opens up a web app to vulnerabilities
such as:

• Data being intercepted by Man-in-the-Middle attacks if communicated without HTTPS
(an application api_key can be stolen when transmitted to a third-party site that’s not using
HTTPS)

• Browser history storing user information (session IDs and tokens that have low entropy or
don’t expire can be extracted from URLs)

• Search engines indexing URLs found in pages
• HTTP servers writing requested URLs including query strings onto unencrypted log files

Aside from these concerns, note that regardless of whether an organization uses HTTP or otherwise,
parameters passed through GET are stored in clear, the browser’s history, and the access log of the
server.

Always enforce HTTPS, especially when transmitting or communicating with external parties in order
to capture exchanged data. Critical pieces of information such as the api_key are best included in some
header or in the request body. In the same vein, make use of one-time-only tokens or session IDs to
minimize the potential for misuse.

The production environment should be rid of all application and system files that are no longer needed.
While they may seem fairly innocent, unattended documentation like ReadMe or Changelog files may
disclose versions or functions that can either be directly used in an attack, leveraged to gain an initial
foothold, or even serve as additional authenticating information used in phishing lures.

Lastly, in the same way unnecessary files are scrubbed, systems may disable services or applications
that are not actively needed in operation, such as autocomplete features and caches.

https://www.cvedetails.com/vulnerability-list.php?vendor_id=14185&product_id=&version_id=&page=1&hasexp=0&opdos=0&opec=0&opov=0&opcsrf=0&opgpriv=0&opsqli=0&opxss=0&opdirt=0&opmemc=0&ophttprs=0&opbyp=0&opfileinc=0&opginf=0&cvssscoremin=0&cvssscoremax=0&year=0&month=0&cweid=0&order=3&trc=74&sha=28620af5fce730868aaad8eb6b0b82bc3b861475

9Kiuwan | Security Guide for Go Developers

Python is also prone to SQL injection — this is a near-constant commonality — but
one of its well-known vulnerabilities is directory traversal. The mechanism
exploited here is similar to Go: improper user input sanitization upon file access.
Still, the resulting vulnerability is unique to Python when compared to Go. Another
typical point of failure for Python is outdated dependencies or modules. Python’s
popularity and wide-scale adoption are partly to blame for this vulnerability, and
so far, while Go has been gaining in popularity, it hasn’t run into this issue as
much. One more example is Python’s built-in assertion functionality, where
insufficient logic may lead to code inadvertently skipping validation statements
due to being in debug mode.

Security Considerations for Go vs.
Other Languages
Go is often compared with other programming languages due to similar features. It was primarily
designed to facilitate faster compilation — that principle in and of itself already creates distinctions from
other languages. Compared to C++, for instance, Go increases memory and decreases dependencies. Put
up against Java, Go certainly compiles faster and doesn’t require a virtual machine, not to mention the
design principles of the latter were meant to counter the verbosity and complexity apparent in the
former.

Of course, that also means security considerations for Go are inherently different from those of other
languages. To better illustrate, consider the common vulnerabilities for two other languages often
compared with Go: Ruby and Python.

In Ruby, too, there are vulnerabilities distinct from Go. Unsafe serializing and deserializing of user input
is one such pitfall. Another is input-output hijacking, where fairly innocuous functions like Kernel::open
can be exploited due to additional features such as spawning processes from which output can be piped.
Naturally, there are “versions” of the same vulnerabilities in Go and Python — Ruby also shares the same
SQL injection vulnerability. The difference is in the method and the results.

The cost for developing using these languages without due concern for appsec is high. Equifax found
out in 2017 how much massive data breaches cost: over $575 million in settled lawsuits stemming from
a hack that exposed information of over 145 million people. A study in 2015 found that costs incurred for
each compromised record containing confidential information amounted to $154 with the average cost
of a data breach reaching $3.8 million.

10

So, what does this mean for a development company’s Go applications? It means they can’t adopt a
wait-and-see approach. What starts out small can snowball into catastrophic proportions. Kiuwan can
help secure Go applications with code security and analysis tools that automatically identify and
remediate vulnerabilities.

Of course, aside from being able to secure Go applications, Kiuwan covers over 30 programming
languages with its security capabilities. Kiuwan offers DevSecOps capabilities that can identify code
vulnerabilities and third-party components in your code, and our solutions integrate with your existing
DevOps tech stack to automate security processes.

Book a demo with Kiuwan today.

Kiuwan | Security Guide for Go Developers

GET IN TOUCH:

Headquarters
2950 N Loop Freeway W, Ste 700

Houston, TX 77092, USA

United States +1 732 895 9870

Asia-Pacific, Europe, Middle East and

Africa +44 1628 684407

contact@kiuwan.com

Partnerships: partners@kiuwan.com

YOU KNOW CODE, WE KNOW SECURITY!

Kiuwan’s Capabilities
Secure Go Applications

https://www.kiuwan.com/free-demo/?

