

Cross Site Request Forgery

What is CSRF

How Kiuwan helps you prevent CSRF (CWE-352)
CSRF-Protection for Java

CSRF-Protection for Javascript
CSRF-Protection for JSP

CSRF-Protection for Csharp

CSRF-Protection for PHP

CSRF-Protection for Python

Cross Site Request Forgery

An example will be helpful.

* Let’s imagine that you are the end user, your online bank website is the vulnerable server,

and the “unwanted” request is to transfer all your money to the attacker’s account.
This is a very basic example of what an attacker could obtain by exploiting a CSRF-vulnerable server.

Now substitute your bank server by any other server you usually access, and only the imagination can

limit what could be achieved by an ingenious hacker! Graphically depicted, the sequence would be

like something like this:

thenticates users; Creates

1. Logins into a session with a session id

banking website

4. Malicious code sends request to server along
with sessionld from current session;

i

3. Users opens up attackers page; [~
Malicious code gets executed

Cross Site Request Forgery

CSRF attacks share these common characteristics:

CSRF - Cross Site Request Forgery

Target User with an account on a vulnerable server
Attack To make request(s) to the vulnerable server through the user’s browser that the server duly performs because it cannot distinguish
goal them from “legitimate” requests

Attacker Attacker’s ability to get the user to click a link crafted by the attacker that makes the request to the vulnerable server

tools

How does the attacker get the user to click a malicious link?

The most common way is when the user visits a website controlled by the attacker with a page

containing something like:

<image src=http://bank.com/transfer.cgi?ammount=9999&to=attacker account>

In this case, the user’s browser will automatically visit the URL to obtain what it believes is an image.

The request is done!

If the user has a valid session in the bank and the bank server is vulnerable to CSRF the transfer will

be done.

This is not the only way (through <image src=...>), the link could also be clicked through a spam email

or any other ingenious way.

Obviously, you should consider this example as a simplification, in real life it is much more

complex, but what’s important is to understand the underlying CSRF mechanism.

http://bank.com/transfer.cgi?ammount=9999&to=attacker_account

Cross Site Request Forgery

Although CSRF is quite a dangerous security flaw, OWASP’s Top 10 (2017) Most Critical Web
Application Security Risks does not include CSRF.

Why? Because most widely used frameworks already provide built-in defenses against CSRF

attacks.

Therefore, the strongest (and most widely used) CSRF protection mechanism is to rely on the underlying framework’s
CSRF protection mechanisms.

Most frameworks provide transparent and easy ways to implement CSRF protection.

Kiuwan is aware of these built-in features, so Kiuwan scans your apps code to “discover” your application’s underlying
framework and checks if CSRF protection is properly enabled.

To perform such an inspection, Kiuwan scans the code and searches for CSRF vulnerabilities applying

language-specific “rules”.

These rules are specifically targeted to every programming language and incorporate in-depth

knowledge to detect CSRF vulnerabilities.

In summary, Kiuwan’'s CSRF-detection rules are based on the following principles:

First, detection of global anti-CSRF protection
If no global protection is found, Kiuwan checks that state-changing server methods are specifically CSRF-protected

https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf
https://www.owasp.org/images/7/72/OWASP_Top_10-2017_%28en%29.pdf.pdf

Cross Site Request Forgery

Besides specific CSRF-protection mechanisms, there are programming practices that, although

they are not CSRF-specific, help to prevent CSRF-attacks.
A sample of good programming practices that can avoid CSRF attacks would be:

e Be sure you app does not contain Cross-Site Scripting (XSS) vulnerabilities Use proper HTTP

verbs
e Use secretized links Very same-origin
e Use synchronizer tokens

Kiuwan can also help you in this sense by identifying these kinds of situations, reporting

vulnerabilities on risky programming practices.

The examples contained throughout this document are a sample of how Kiuwan checks for CSRF, not

a reflection of how it actually performs these checks. The list is partial and is continuously updated.

Synchronizer Tokens

Many frameworks provide built-in CSRF protection mechanisms that help you defend against CSRF

attacks quite transparently.

Frameworks that provide CSRF defense are based on Synchronizer Token Pattern
(http://www.corej2eepatterns.com/Design/PresoD esign.htm).

http://www.corej2eepatterns.com/Design/PresoDesign.htm
http://www.corej2eepatterns.com/Design/PresoDesign.htm

Cross Site Request Forgery

* Basically, the approach is to include a secure random token (CSRF token) within all the state-
changing operations (i.e. those that make modifications), until the session expires.
* Remember that the CSRF attacker cannot see the results of the request, so a CSRF attack

goal is always to change something in the server.

* This CSRF token is added to the request (through a hidden field, or in any other equivalent
mechanism) and the server checks that token against the token stored in the session.

* If both tokens match, go ahead. Otherwise, reject the request and log it.

* When the request is issued by the end-user (through a hidden field, or in any other equivalent
mechanism), the server verifies the existence and validity of the token in the request as
compared to the token stored in the session.

* If the token is not found within the request or the value does not match the value stored in

the session, then the request should be aborted.

Graphically depicted, the sequence would be like something like this:

Cross Site Request Forgery

M|

1. Share link to malicious-site.com malicious-site.com
through email, social media and other 3. load page with

malicious payioad

.ﬁ

2. Open link in browser

Victim's browser

- auth cookie
- XSRF cookie token

but missing: target-site.com
- XSRF request token

Cross Site Request Forgery

Malicious Site
(malicious.com)

Fm
4. Send ?khe token x Read

with the form

Form
Input Values

e

5. Input values into the form

- 6. Submit the form back to
7. Compare the the server with the token
returned token with
the original one

8. If the tokens are
the same, execute
\ the request

Other helpful defense

No XSS

Any Cross-Site Scripting (XSS) vulnerability can be used to overcome anti-CSRF defenses.

This is because an attacker's XSS payload acts as if it is coming from the same origin as the

application content, and may read any page content or use XMLHttpRequest to read the CSRF token

Cross Site Request Forgery

from the "form" page, and then forge the request to the action URL with that token.
If you need to prevent CSRF vulnerabilities, please be sure there are no XSS vulnerabilities.

Kiuwan provides XSS detection rules for all major languages (Java, JavaScript, C#, PHP, Swift, Python,
Objective-C, among others).

Use proper HTTP verbs

Another recommendation to protect against CSRF attacks is not including any sensitive information in an HTTP GET request

HTTP/1.1 RFC 2616 Section 15.1.3 (Encoding Sensitive Information in URI's) states:

Authors of services which use the HTTP protocol SHOULD NOT use GET based forms for the
submission of sensitive data, because this will cause this data to be encoded in the Request-
URI. Many existing servers, proxies, and user agents will log the request URI in some place

where it might be visible to third parties. Servers can use POST-based form submission

instead.
The main reason is that including private information in an HTTP GET can cause the information to be
leaked.

This recommendation (“not using GET”) can be generalized to “use PATCH, POST, PUT and/or DELETE for
anything that modifies server state”.

https://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html#sec15.1.3

Cross Site Request Forgery

As we will see later on this document, Kiuwan also provides checks to detect these types of situations.

Secretized Links

Once you are authenticated in a website, you most probably will receive a unique session ID (typically in a
cookie). If the cookie is not expired, the browser will send it automatically along with the request to the

server!

CSRF attacks work because certain types of requests have the same structure minus the session information. But the session
information is automatically sent by the browser. This produces a request with a valid session that the server trusts because it cannot
recognize that it was not produced by the legitimate user.

Therefore, a solution would be to include a “secret” in every link/form that the attacker cannot
guess (or takes a huge time to guess): The “secret” can be within a hidden form field, in a
custom HTTP header or even can be encoded directly in the URL

* Of course, the secret must not be a value that can be guessed

* It could be even the same as the session id that is sent in the cookie (double submit cookie)

Bear in mind that the attacker does not have access to the cookies, so a double submit of the ID (in the

cookie) and in the URL is a common way to add a CSRF prevention mechanism.

Verify Same Origin with standard headers

This CSRF-prevention technigue relies on obtaining information about source and target origin of the request, and checking that source
and target origins matches. If not, your app might be under attack by CSRF.

SOP (Same origin policy) mechanism restricts access to content loaded from a web site other than
current document origin. It is a powerful security feature when preventing attacks through malicious

scripts, such as Cross Site Scripting attacks.

In HTML5, SOP feature can be disabled specifying a CORS (Cross-origin resource sharing) policy using
the new HTTP header Access-Control-Al low-Origin.

Avoiding Cross Site Request Forgery

This new header provides flexibility but must be used carefully. With a overly broad CORS policy,

exploitability of security flaws increases notably.

Kiuwan provides rules for several languages that report vulnerabilities
when CORS is excessively broad. You can visit
http://lenxwei.blogspot.com.es/2014/08/how-to-mitigate-csrf-using-

origin.html for further info.

kiuwan

http://lenxwei.blogspot.com.es/2014/08/how-to-mitigate-csrf-using-origin.html
http://lenxwei.blogspot.com.es/2014/08/how-to-mitigate-csrf-using-origin.html

Cross Site Request Forgery

CSRF-Protection
for Java

CSRPratectionfor Java

You can see in the table below existing CSRF-related Kiuwan rules.

Rule code Name
OPT.JAVA.SEC_JAVA.CrossSiteRequestForgeryRule Cross-Site Request Forgery (CSRF)
OPT.JAVA.SEC_JAVA PlaySecurityMisconfiguration Security misconfiguration in Play framework.

OPT.JAVA.SEC_JAVA .InsecureRandomnessRule Standard pseudo-random number generators cannot withstand cryptographic

attacks
OPT.JAVA.SEC_JAVA.UnsafeCookieRule Generate server-side cookies with adequate security properties

OPT.JAVA.SEC_JAVA.WebXmiSecurityMisconfigurationsRule = Avoid misconfiguration of security properties in web.xml descriptor

While CrossSiteRequestForgeryRule and PlaySecurityMisconfiguration are specifically aimed to detect

CSRF vulnerabilities, the others are quite helpful to detect conditions that could be used to exploit a

CSRF attack.

OPT.JAVA.SEC_JAVA.CrossSiteRequestForgeryRule

The main Java CSRF rule in Kiuwan is named “Cross-site request forgery (CSRF)” (code:
OPT.JAVA.SEC_JAVA.CrossSiteRequestFor geryRule).

This rule basically works by inspecting your code and checking you are using some defense against CSRF attacks.

Avoiding Cross Site Request Forgery

As CSRF protection is widely based on mechanisms provided by underlying frameworks, this rule

checks that some CSRF protection mechanism is being used AND is properly configured.

This rule detects if you are not using any CSRF protection mechanism, or it’s disabled, or it’s wrongly

configured. In any of these cases, the rule reports such a vulnerability.

kiuwan

Cross Site Request Forgery

Configuration

This rule allows to be configured according to the following parameters:
o checkStateChange

e checkers patterns

checkStateChange

You may set checkStateChange=true for reporting as vulnerable only through those actions that perform

state-modification operations, like file/database writes or changes in session.

Kiuwan contains an internal repository of most-common state-change operations.

When true, Kiuwan will only report CSRF vulnerabilities on those operations that call state-change
operations, so potentially vulnerable actions not performing any state-change operation are not

reported.
When false, Kiuwan will check all the operations.

Default value is true, which is adequate for most of occasions (unless you want Kiuwan performs a full

scan of all actions), so avoiding false positives.

checkers

OPT.JAVA.SEC_JAVA.CrossSiteRequestForgeryRule checks if your code is using some of the most

commonly used CSRF Protection mechanisms..

Below is a partial list of checked CRSF Protection mechanisms that Kiuwan performs.

CSRF
Protection

Spring

OWASP
CSRFGuard
3

Tomcat
CSRF

Prevention
Filter

OWASP
ESAPI

Struts 1
Struts 2

Hdiv

JavaServer
Faces (USF)
2

Cross Site Request Forgery

References

https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
http://www.codejava.net/frameworks/spring/spring-web-mvc-security-basic-example-part-1-with-xml-configuration

http://www.codejava.net/frameworks/spring/spring-web-mvc-security-basic-example-part-2-with-java-based-configuration

https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project

https://tomcat.apache.org/tomcat-7.0-doc/config/filter.ntmI#CSRF_Prevention_Filter

https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/filters/CsrfPreventionFilter.html
https://tomcat.apache.org/tomcat-7.0-doc/config/filter.ntmI#CSRF_Prevention_Filter
https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/e5be9994bb571014b575a785961062db.html

https://www.owasp.org/index.php/Category: OWASP_Enterprise_Security API
http://www.jtmelton.com/2010/05/16/the-owasp-top-ten-and-esapi-part-6-cross-site-request-forgery-csrf/
https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline

https://www.owasp.org/index.php/Category: OWASP_Enterprise_Security API
https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0/org/owasp/esapi/HT TPUtilities.html#addCSRFToken(java.lang.String)
https://stackoverflow.com/questions/4303635/cross-site-request-forgery-prevention-using-struts-token
https://stackoverflow.com/questions/22802225/how-to-implement-csr-forgery-prevention-code-on-struts2
https://hdivsecurity.com/docs/csrf/

https://github.com/hdiv/hdiv

https://stackoverflow.com/questions/26969415/should-protected-views-be-used-for-jsf-2-2-csrf-protection

http://arjan-tijms.omnifaces.org/p/jsf-22.html#869

https://docs.spring.io/spring-security/site/docs/current/reference/html/csrf.html
http://www.codejava.net/frameworks/spring/spring-web-mvc-security-basic-example-part-1-with-xml-configuration
http://www.codejava.net/frameworks/spring/spring-web-mvc-security-basic-example-part-2-with-java-based-configuration
https://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CSRF_Prevention_Filter
https://tomcat.apache.org/tomcat-7.0-doc/api/org/apache/catalina/filters/CsrfPreventionFilter.html
https://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CSRF_Prevention_Filter
https://help.sap.com/viewer/65de2977205c403bbc107264b8eccf4b/Cloud/en-US/e5be9994bb571014b575a785961062db.html
http://www.jtmelton.com/2010/05/16/the-owasp-top-ten-and-esapi-part-6-cross-site-request-forgery-csrf/
https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline
https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline
https://static.javadoc.io/org.owasp.esapi/esapi/2.1.0/org/owasp/esapi/HTTPUtilities.html#addCSRFToken(java.lang.String)
https://stackoverflow.com/questions/4303635/cross-site-request-forgery-prevention-using-struts-token
https://stackoverflow.com/questions/22802225/how-to-implement-csr-forgery-prevention-code-on-struts2
https://hdivsecurity.com/docs/csrf/
https://github.com/hdiv/hdiv
https://stackoverflow.com/questions/26969415/should-protected-views-be-used-for-jsf-2-2-csrf-protection
http://arjan-tijms.omnifaces.org/p/jsf-22.html#869

Cross Site Request Forgery

Spring Security

Spring Security helps you to protect applications against CSRF attacks through its built-in Spring Security CRSF Protection
mechanism.

Kiuwan checks that you are using Spring by checking in /WEB-INF/web.xml the existence of a filter such

as:

<filter>
<filter-name>springSecurityFilterChain</filter-name>
<filter-class>org.springframework.web.filter.DelegatingFilterProxy</filter-class>

</filter>

Spring Security version is extracted from descriptor files according to the version of spring-security-

x.y.xsd schema definition file.

By default, CSRF Protection is enabled since Spring Security 4.0. But, for older versions you must explicitly activate it. Kiuwan checks
the Spring version your application is using and apply proper checks in XML configuration files to ensure that CSRF Protection is active,
raising CSRF vulnerabilities wherever it founds it’s not activated.

Spring Security 4.x
Spring Security 4.x allows to configure CSRF
« protection at twolevels: through XML
configuration

* through Java configuration

Spring Security 4.x XML CSRF Protection is enabled by default and can be disabled through:

Cross Site Request Forgery

<http>
<l== ... ==>
<csrf disabled="true"/>

</http>

Therefore, Kiuwan checks the existence of explicit disablement of CSRF Protection in the following XML
configuration files: the top-level application context configuration file: WEB-INF/spring-security.xml, and
servlets configuration files defined at /WEB-INF/web.xml :

servlet configuration file as defined in contextConfiglLocation param-name of <init-param>, or

WEB-INF/<servlet-name>-servlet.xml

Any occurrence of a explicit disablement of CSRF will be reported by
Kiuwan as a CSRF vulnerability. Spring Security 4.x Java CSRF
Protection is enabled by default and can be disabled through:

@EnableWebSecurity

public class WebSecurityConfig extends
WebSecurityConfigurerAdapter {

@Override

protected void configure (HttpSecurity http) throws Exception { http
.csrf().disable();
}

}

Spring Security 3.x (or older)

Spring Security 3.x CSRF Protection is NOT enabled by default and can be enabled through:

<http>
<l-= .0 ==>
<csrf/>

</http>

Therefore, in this case, Kiuwan checks the existence of explicit enable of CSRF Protection in

Cross Site Request Forgery

the same XML configuration files. Any non-existence of explicit CSRF protection will be

reported by Kiuwan as a CSRF vulnerability.

OWASP CSRFGuard

OWASP CSRFGuard is a library that implements a variant of the synchronizer token pattern to mitigate the risk of Cross-Site Request
Forgery (CSRF) attacks.

The OWASP CSRFGuard library is integrated through the use of a JavakE Filter and exposes various

automated and manual ways to integrate per-session or pseudo-per-request tokens into HTML.

At https://www.owasp.org/index.php/Category:OWASP_CSRFGuard_Project you can get details of
configuration and use of OWASP CSRFGuard.

Cross Site Request Forgery

Kiuwan will inspect web.xml file to check if CSRFGuard protection is properly configured.

<filter>
<l== .. ==>
<filter-name>CSRFGuard</filter-name>
<filter-class>org.owasp.csrfguard.CsrfGuardFilter</filter-class>
</filter>
<filter-mapping>
<l== .. ==>
<filter-name>CSRFGuard</filter-name>
<url-pattern>/*</url-pattern>

</filter-mapping>

Tomcat CSRF Prevention Filter

Tomcat provides a CSRF Prevention Filter that performs CSRF protection for web applications (https://tomcat.apache.org/tomcat-
7.0- doc/config/filter.ntml#CSRF_Prevention_Filter).

The filter assumes that it is mapped to /* and that all URLs returned to the client are encoded via a call to

HttpServietResponse#encodeRedirectU RL(String) or HttpServletResponse#encodeURL(String).

This filter prevents CSRF by generating a nonce and storing it in the session. URLs are also
encoded with the same nonce. When the next request is received the nonce in the request is
compared to the nonce in the session and only if they are the same is the request allowed to

continue.

The filter class name for the CSRF Prevention Filter is org.apache.catalina.filters.CsrfPreventionFilter.
Also, Tomcat provides a equivalent filter for REST APIs

(org.apache.catalina.filters.RestCsrfPreventionFilter).

https://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CSRF_Prevention_Filter
https://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CSRF_Prevention_Filter
https://tomcat.apache.org/tomcat-7.0-doc/config/filter.html#CSRF_Prevention_Filter

Cross Site Request Forgery

Kiuwan will inspect web.xml file to check if Tomcat protection is configured for both filters.

OWASP Enterprise Security APl (ESAPI)

ESAPI (OWASP Enterprise Security API) is a free, open source, web application security control library that makes it easier for
programmers to write lower-risk applications.

The ESAPI libraries are designed to make it easier for programmers to retrofit security into existing
applications.

At https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline you can see the guidelines to
protect against CSRF using ESAPI calls.

AUO009 Link and form URLs for all transactions shall be updated with the HTTPUtilities.addCSRFToken() method to add a CSRF token.

AUO010 All HTTP requests for transactions shall be verified using the HTTPUtilities.verifyCSRFToken() method to check that the request is not
forged.

Kiuwan scans your code (web forms and web URL preparing controller methods) to check if the above

calls are used and are CSRF-protected.

Struts 1

The Struts 1 Action token methods will add a token to the session and check it on form submission.

https://www.owasp.org/index.php/ESAPI_Secure_Coding_Guideline

Cross Site Request Forgery

The basic workflow is:

* The user gets to the form through a Struts Action (not directly to the JSP). The Struts Action will
call saveToken(request) before forwarding onto the JSP that contains the form.

* The form on the JSP must use the <html:form> tag.

* Your Action that the form submits to will first call isTokenValid(request, true), and you should
redirect back to the first Action with an error message if it returns false. This also resets the token

for the next request.

Doing this will not only prevent duplicate form submissions but any script will have to hit the first
Struts Action and get a session before it can submit to the second Struts Action to submit the form.

Since a site can't set a session for another site, this should prevent CSRF.

Kiuwan scans your code to check if saveToken(req) /isTokenValid(req)is called in the body of an Action

execute method, thus preventing CSRF.

Struts 2

Struts 2 CSRF protection uses token interceptor, which will protect all actions including that interceptor BEFORE the defaultStack.

The "security" stack could be registered as default interceptor, or protect EVERY sensitive action. The

interceptor should go before the defaultStack/completeStack or workflow interceptors.

Avoiding Cross Site Request Forgery

<interceptors>
<interceptor-stack name="defaultSecurityStack">
<interceptor-ref name="defaultStack"/>
<interceptor-ref name="tokenSession">
<param name="excludeMethods">*</param>
</interceptor-ref>
</interceptor-stack>

</interceptors>

Kiuwan scans your code to check token interceptor is properly configured, thus preventing CSRF.

HDIV

HDIV is a security framework for J2EE, that works with Spring MVC, Thymyleaf, Grails, JSTL, Struts 1 and 2, and JSF.

HDIV prevents CSRF attacks by inserting a random token in links and forms. It uses a filter that

provides "transparent security", including anti-CSRF synchronized token.

HDIV adds a random token to each link or form existing within the application. This makes it extremely

difficult to implement a CSRF attack as the attacker does not know the token value.

kiuwan

Cross Site Request Forgery

<listener>
<listener-class>org.hdiv.listener.InitListener</listener-class>

</listener>

<!-- Hdiv Validator Filter -->
<filter>
<filter-name>ValidatorFilter</filter-name>
<filter-class>org.hdiv.filter.ValidatorFilter</filter-class>
</filter>
<filter-mapping>
<filter-name>ValidatorFilter</filter-name>
<!-- Spring MVC Servlet name-->
<servlet-name>SampleMvc</servlet-name>

</filter-mapping>

In order to offer an additional security level HDIV does not use a random token per session and creates a
new token for each requested page. Even the token used by links and forms within the same page are

different avoiding the reuse of link tokens to exploit a web form.

Kiuwan scans your code to check HDIV token filter is properly configured, thus preventing CSRF.

JavaServer Faces (JSF) 2

JSF 2 has some implicit protection against this when state is saved on the server and no stateless views

are used, since a post-back must then contain a valid javax.faces.ViewState hidden parameter.

Contrary to earlier versions, this value seems sufficiently random in modern JSF implementations. Do

note that stateless views and saving state on the client does not have this implicit protection.

JSF 2.2 introduced an additional/stricter explicit protection against CSRF attacks.

Among others, client state encryption is now on by default and there's a token parameter for

protection of non-postback views, stateless views and views with client side state.

Cross Site Request Forgery

Kiuwan looks for <csrf /> element in faces-config.xml (if JSF 2.2+ this is enabled by default), so all
postback <h:form> pages are safe (they encode a CSRF token automatically), while non-postback
pages (i.e. reachable with GET) with sensitive operations should be listed in the <prote cted-view> list

of patterns.

OPT.JAVA.SEC_JAVA.PlaySecurityMisConfiguration

Play Framework (https://www.playframework.com) is becoming a widely used framework to build web

applications with Java.

Play provides several filters that could block/mitigate common attacks in a web application. These filters
are configured in the application configuration files (like application.conf).

In recent versions, most of those filters are enabled and

properly configured by default. In particular, three filters are

enabled by default:

* CSRFFilter, which provide protection against CSRF (cross-site request forgery) attacks, using a
SRF token that enables any sensitive action to execute only if the token is passed from another
site resource, which avoids CSRF.

* SecurityHeadersFilter, which sets security-related HTTP headers for protection/mitigation of
cross-site scripting, clickjacking, MIME sniffing, Adobe Flash cross-domain policy hijacking,
Referrer header leakage, and other security issues.

: AllowedHostsFilter, which sets a white list of hosts that can access the application. This is
useful to prevent cache poisoning attacks. In addition, a RedirectHttpsFilter (not enabled by

default) could be enabled for redirecting all HTTP requests to HTTPS automatically.

Disabling these filters, or misconfiguring them with incorrect or too-permissive values, might open the avenue for security
vulnerabilities. The rule reports any suspicious configuration element.

Specifically for CSRF, this rule looks in the application.conffile for a global deactivation of the default anti-CSRF filter, and for each
route in routes file, the nocsrf modifier is not applied to a state-modification method (POST, PUT, DELETE, PATCH).

https://www.playframework.com/

Cross Site Request Forgery

OPT.JAVA.SEC_JAVA.InsecureRandomnessRule

Insecure randomness errors occur when a function that can produce predictable values is used as a

source of randomness in a security-sensitive context:
e security tokens (like anti-CSRF or password-reset tokens)

e values used in cryptographic operations (session key material, initialization vector in block or

stream ciphers) password seeds.

The rule checks that your code is using cryptographically secure practices to generate tokens, a necessary condition to
any CSRF-protection based on synchronizer tokens.

OPT.JAVA.SEC_JAVA.UnsafeCookieRule

This rule checks that cookies generated in server side are generated with adequate security properties:
o Non persistent - Cookie is not stored persistently by the browser
e HttpOnly - Cookie is not accessible by client-side scripts
e Secure - Cookieis sentin HTTP/SSL communications only

e Path - Path should not match a certain patterns that allow transmission to unintended web

applications
e Domain - Domain should not be too wide so the cookie is sent to unintended servers

Although all of them contribute to a more secure cookie management, HttpOnly is specially suited to

mitigate some CSRF issues.

HttpOnly makes more difficult for the attacker to capture sensitive cookies from client-side code

generated by exploiting an XSS vulnerability in a web application.

Cross Site Request Forgery

OPT.JAVA.SEC_JAVA.WebXmlSecurityMisconfigurationsRule

This rule, although it is not CSRF-specific, implements several checks for common security

misconfigurations in web.xml descriptors.

e No default error pages for 404/500 error codes and for uncaught exceptions. No methods in

security constraints.
e Configure SSL for protected areas. Send session ID under SSL only.
e Send session cookies with the HttpOnly flag set.

e Use cookies, not URL rewriting, to exchange session IDs with browsers. Expire sessions with no

too large timeouts.

If present, these misconfigurations facilitate CSRF-attacks. Pay attention of this rule to detect any

misconfiguration.

Cross Site Request Forgery

CoRF-Protection
for Javascript

CSRF-Protectionfor JavaScript

You can see in the table below existing CSRF-related Kiuwan rules.

Rule code Name

OPT.JAVASCRIPT.CrossSiteRequestForgery Execution of an action on user behalf in a previously authenticated web site (cross-site request
forgery, CSRF)

OPT.JAVASCRIPT.UnsafeCookie Generate server-side cookies with adequate security properties

While CrossSiteRequestforgeryRule is specifically aimed to detect CSRF vulnerabilities, UnsafeCookie is
quite helpful to detect conditions that could be used to exploit a CSRF attack.

In web sites developed with JavaScript server-side frameworks (like Node.js, Express or Koa), anti-forgery tokens, also known as
request verification tokens, should be utilized to prevent CSRF attacks.

OPT.JAVASCRIPT.CrossSiteRequestForgery

As explained before, anti-forgery tokens are random values generated in the server when a formis
requested, and they are included in every request, so the server can verify not only that user is

authenticated, but that the request was originated from the application.

This rule checks:

Cross Site Request Forgery

e |If a code fragment should be protected against CSRF attacks (for example, handling a POST

request).
e Ifsuch code is protected with one of the recommended anti-CSRF protection schemes.

e If no protection is found for the candidate code, a violation is reported.

Use an anti-CSRF protection module for your framework.

Table below lists a partial list of supported JavaScript engines, frameworks and protection mechanisms

that Kiuwan checks for CSRF-protection.

JS Server Framework Protection Reference
Node.js Express csurf https://github.com/expressjs/csurf
alt-xsrf https://www.npmjs.com/package/alt-xsrf
Koa koa-csrf https://github.com/koajs/csrf
stateless-csrf https://github.com/koajs/stateless-csrf

koa-atomic-session https://github.com/koajs/atomic-session

SAP Hana XS prevent_xsrf http://hanaperspective.blogspot.com.es/2017/02/sap-hana-xs-application-access-file.html

Additional references:

: Express : https://developer.mozilla.org/en-
US/docs/Learn/Server-side/Express_Nodejs Koa :
http://koajs.com/

* Hana XS:

. http://saphanatutorial.com/sap-hana-xs-sap-hana-extended-application-services/
https://help.sap.com/viewer/400066065a1b46cf91df0ab436404ddc/2.0.02/en-
US/a9fc5c220d744180850996e2f5d34d6¢.html#loi
0a9fc5c220d744180850996e2f5d34d6¢__section_N101F7_N10016_N10001

OPT.JAVASCRIPT.UnsafeCookie

https://github.com/expressjs/csurf
https://www.npmjs.com/package/alt-xsrf
https://github.com/koajs/csrf
https://github.com/koajs/stateless-csrf
https://github.com/koajs/atomic-session
http://hanaperspective.blogspot.com.es/2017/02/sap-hana-xs-application-access-file.html
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs
https://developer.mozilla.org/en-US/docs/Learn/Server-side/Express_Nodejs
http://koajs.com/
http://saphanatutorial.com/sap-hana-xs-sap-hana-extended-application-services/
https://help.sap.com/viewer/400066065a1b46cf91df0ab436404ddc/2.0.02/en-US/a9fc5c220d744180850996e2f5d34d6c.html#loioa9fc5c220d744180850996e2f5d34d6c__section_N101F7_N10016_N10001
https://help.sap.com/viewer/400066065a1b46cf91df0ab436404ddc/2.0.02/en-US/a9fc5c220d744180850996e2f5d34d6c.html#loioa9fc5c220d744180850996e2f5d34d6c__section_N101F7_N10016_N10001
https://help.sap.com/viewer/400066065a1b46cf91df0ab436404ddc/2.0.02/en-US/a9fc5c220d744180850996e2f5d34d6c.html#loioa9fc5c220d744180850996e2f5d34d6c__section_N101F7_N10016_N10001

Avoiding Cross Site Request Forgery

This rule checks that cookies generated at server-side (for example, in Node.js) have adequate security

properties.

This rule is analogous to Java rule (see OPT.JAVA.SEC_JAVA.UnsafeCookieRule for details).

kiuwan

Cross Site Request Forgery

CSRF-Protection for JSP

CSRPratectionfor JSP

OPT.JSP.SEC_JSP.FileIlnclusionVulnerability

JSP technology provides the <jsp:include> action (or JSTL <c:import>) for including content in the

current page, either from a local (web application) resource or from an URL, respectively.

When the page path or URL is formed using untrusted input, an attacker may provide the input in the
HTTP request to force the J2EE application server to include an unintended resource, which opens the
way to either sensitive local file disclosure (like a /WEB-INF configuration file), or catastrophic remote
file injection (e.g. remote attacker-controlled content with embedded malicious JavaScript code for
CSRF attacks, or Java code in scriptlet to execute unexpected server-side operations, including

operating system commands).

Kiuwan provides the rule OPT.JSP.SEC_JSP.FileinclusionVulnerability that avoids unintended leakage of sensitive local/remote files, or
remote file include attacks, in JSP dynamic include actions.

Use the "compile-time" <% @ include %> directive, if the included page is local and non dynamic.

If included page should be dynamic, never let untrusted input to directly form part of the page path (for
<jsp:include>) or page URL (for <c:import>
). Better use a request attribute, set in the request processing server-side controller class, where the

dynamic page is selected (but untrusted input should not be part of the page path/url anyway).

A "white-list" validation scheme (untrusted input may be used only to select from a known list of allowed

pages) could be used as well.

Cross Site Request Forgery

CSRF-Protection for Csharp

CSRF-Pratectionfor Csharp

You can see in the table below existing CSRF-related Kiuwan rules.

Rule code Name

OPT.CSHARP.CrossSiteRequestForgery Cross-Site Request Forgery (CSRF)

OPT.CSHARP.CrossSiteScripting Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')
OPT.CSHARP.StoredCrossSiteScripting Web content generation from improper sanitized database data and escaped output

(Stored Cross-site Scripting, XSS)
OPT.CSHARP.MVCPostInControllers Restrict allowed HTTP verbs for state-change operations in MVC controllers
OPT.CSHARP.SEC.CrossSiteHistoryManipulation = Cross-Site History Manipulation (XSHM)
OPT.CSHARP.SEC.UnsafeCookieRule Generate server-side cookies with adequate security properties

OPT.CSHARP.TooMuchOriginsAllowed Too much allowed origins in HTML5 Access-Control-Allow-Origin header

While CrossSiteRequestforgeryRule is specifically aimed to detect CSRF vulnerabilities, the others are

quite helpful to detect conditions that could be used to exploit a CSRF attack.

OPT.CSHARP.CrossSiteRequestForgery

In web sites developed with ASP.Net framework, anti-forgery tokens, also known as request verification tokens, should be utilized to
prevent CSRF attacks.

Anti-forgery tokens are random values generated in the server when a form is requested, and they are

Cross Site Request Forgery

included in every request, so the server can verify not only that user is authenticated, but that the

request was originated from the application.

This rule checks:

1. If a code fragment (an MVC / Web API controller or state-changing method, or a Web Forms page) should be protected against
CSRF attacks.
2. If such code is protected with one of the recommended anti-CSRF protection schemes:
a. For a WebForms page, checks whether ViewStateUserKey is set (without disabling EnableViewStateMac). Parent pages
and master pages are taken into account.
b. For a MVC controller action method, checks for [ValidateAntiForgeryToken] attribute (or a call to AntiForgery.Validate()).
c. Alternatives, like common Captcha controls like Google's Recaptcha, are checked for.

3. If no protection is found for the candidate code, a CSRF vulnerability is reported.

Implementation in Web Forms

In Web forms, the use of anti-forgery tokens is based on having enabled EnableViewStateMac attribute

and using ViewStateUserKey field to store a unique identifier per session.

EnableViewStateMac attribute is compulsory enabled since version 4.5.2 of .Net framework, released
in Sept-2014, and there are security patches (whose installation is highly recommended) for versions

from 1.1 t0 4.5.2.

If you have a version older than 4.5.2 and no security patched have been applied, it’s essential to review

that this attribute is not disabled (in the application configuration files or any of its pages).

As to ViewStateUserKey, its value can be filled in Page_Init method of pages or in your web application’s

master page, or in your pages’ Oninit m ethod.

Implementation in ASP .NET MVC and Web API

In ASP .NET MVC and Web API applications, .NET framework facilitates the creation and validation of

anti-forgery tokens.

Cross Site Request Forgery

. To create anti-forgery tokens, you can use @AntiForgery.GetHtml() method in Razor page or
@Html.AntiForgeryToken() method in MVC Views.
* For validation, you can use @AntiForgery.Validate() method or include a ValidateAntiForgeryToken
attribute in your action or MVC Controller.
If you want to extend the built-in functionality provided by ASP .NET, you can use
IAntiForgeryAdditionalDataProvider to add additional information to the generated tokens and,

subsequently, make the needed validation.

Additional Kiuwan rules and notes on CSRF in Csharp

Generally speaking, you should pay attention to the following considerations when protecting from CSRF

attacks:

* Any Cross-Site Scripting (XSS) vulnerability can be used to defeat anti-CSRF defenses. This is
because an attacker's XSS payload acts as if coming from the same origin as the application
content, and may read any page content or use XMLHttpRequest to read the CSRF token from
the "form" page, and then forge the request to the action URL with that token. XSS cannot
defeat challenge-response defenses, such as Captcha, re-authentication, or one-time
passwords.
Any check on Referrer header as mitigation against CSRF is not practical, as it may be spoofed by
attackers under certain circumstances, and browsers may disable it for privacy reasons (link type
"noreferrer"). Verifying the Referer header is NOT considered a secure approach for preventing
CSRF attacks.
* A previous "generic" verification on the Origin header, when properly implemented, provides a
stronger prevention mechanism. But the devilis in the details: old browsers do not send it, and for
requests originated from the same site, the browser may not send it. If you trust the browser
(blocking old browsers), you may either accept requests with no Origin header as coming from
same site, and otherwise check if Origin header is an allowed origin (e.g. the application site, or
against Host or X-Forwarded-Host headers).
* Never ever accept HTTP verbs different from POST (or PUT/PATCH/DELETE) for sensitive actions.
GET (and HEAD/OPTIONS) should not be allowed.

Cross Site Request Forgery

Besides the specific OPT.CSHARP.CrossSiteRequestForgery rule, Kiuwan provides additional rules that

can check the above conditions. Pay attention to vulnerabilities found for rules in the following table.

Rule code Name

OPT.CSHARP.CrossSiteRequestForgery Cross-Site Request Forgery (CSRF)

OPT.CSHARP.CrossSiteScripting Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')
OPT.CSHARP.StoredCrossSiteScripting Web content generation from improper sanitized database data and escaped output

(Stored Cross-site Scripting, XSS)
OPT.CSHARP.MVCPostInControllers Restrict allowed HTTP verbs for state-change operations in MVC controllers
OPT.CSHARP.SEC.CrossSiteHistoryManipulation =~ Cross-Site History Manipulation (XSHM)
OPT.CSHARP.SEC.UnsafeCookieRule Generate server-side cookies with adequate security properties

OPT.CSHARP.TooMuchOriginsAllowed Too much allowed origins in HTML5 Access-Control-Allow-Origin header

For reference on these rules, please consult Java version of those rules as the mechanism is analogous.

Cross Site Request Forgery

CSRF-Protection for PHP

CSRF-Rratection for PHP

You can see in the table below existing CSRF-related Kiuwan rules.

Rule code Name

OPT.PHP.CrossSiteRequestForgery Cross-Site Request Forgery (CSRF)

OPT.PHP.AvoidUseDefaultSecret Avoid using secret value default symfony: ThisTokenlsNotSoSecretChangelt

OPT.PHP.CrossSiteScripting Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')

Improper neutralization of stored data during web content generation (Cross-site Scripting,

XSS)

OPT.PHP.StoredCrossSiteScripting

OPT.PHP.SEC.CrossSiteHistoryManipulation = Cross-Site History Manipulation (XSHM)

While CrossSiteRequestForgeryis specifically aimed to detect CSRF vulnerabilities, the others are quite

helpful to detect conditions that could be used to exploit a CSRF attack.

OPT.PHP.CrossSiteRequestForgery

In web sites developed with PHP, anti-forgery tokens, also known as request verification tokens, should be utilized to prevent CSRF

attacks.

Anti-forgery tokens are random values generated in the server when a form is requested, and they are

included in every request, so the server can verify not only that user is authenticated, but that the

request was originated from the application.

Cross Site Request Forgery

This rule checks:

1. If a code fragment should be protected against CSRF attacks (that is, performs state-change operations, like database changes or
file writes).
2. If such code is protected with one of the recommended anti-CSRF protection schemes.

3. If no protection is found for the candidate code, a violation is reported.

Table below is a partial list of supported PHP libraries and protection mechanisms that Kiuwan checks

for CSRF-protection.

PHP Library Protection Reference

OWASP PHP CSRF Guard https://www.owasp.org/index.php/PHP_CSRF_Guard
CSRF Magic csrf-magic.php https://github.com/ezyang/csrf-magic

CSREF Protector csrfprotector.php https://github.com/mebjas/CSRF-Protector-PHP/wiki
CSRF4PHP CsrfToken https://github.com/foxbunny/CSRF4PHP/

NoCSRF https://github.com/BKcore/NoCSRF

Csrf (skookum) https://github.com/Skookum/csrf/blob/master/classes/csrf.php
Anticsurf https://code.google.com/archive/p/anticsurf

CSRF Protection (XCMer) https://github.com/XCMer/csrfprotect

Paragonie Anti-CSRF https://github.com/paragonie/anti-csrf

EasyCSRF https://github.com/gilbitron/EasyCSRF

PHP RFC https://wiki.php.net/rfc/automatic_csrf_protection

Additional Kiuwan rules and notes on CSRF in PHP

Beside the specific OPT.PHP.CrossSiteRequestForgery rule, Kiuwan provides additional rules
that can check CSRF-related conditions. Pay attention to vulnerabilities found for rules in the

following table.

Rule code Name
OPT.PHP.AvoidUseDefaultSecret Avoid using secret value default symfony: ThisTokenlsNotSoSecretChangelt

OPT.PHP.CrossSiteScripting Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')

https://www.owasp.org/index.php/PHP_CSRF_Guard
https://github.com/ezyang/csrf-magic
https://github.com/mebjas/CSRF-Protector-PHP/wiki
https://github.com/foxbunny/CSRF4PHP/
https://github.com/BKcore/NoCSRF
https://github.com/Skookum/csrf/blob/master/classes/csrf.php
https://code.google.com/archive/p/anticsurf
https://github.com/XCMer/csrfprotect
https://github.com/paragonie/anti-csrf
https://github.com/gilbitron/EasyCSRF
https://wiki.php.net/rfc/automatic_csrf_protection

Avoiding Cross Site Request Forgery

OPT.PHP.StoredCrossSiteScripting Improper neutralization of stored data during web content generation (Cross-site Scripting,
XSS)

OPT.PHP.SEC.CrossSiteHistoryManipulation = Cross-Site History Manipulation (XSHM)

kiuwan

Cross Site Request Forgery

CSRF-Protection tor Python

CSRF-Rratection for PHP

You can see in the table below existing CSRF-related Kiuwan rules.

Rule code Name

OPT.PYTHON.SECURITY.CrossSiteRequestForgery = Cross-Site Request Forgery (CSRF)

OPT.PYTHON.SECURITY.CrossSiteScripting Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting')

OPT.PYTHON.SECURITY.StoredCrossSiteScripting Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

OPT.PYTHON.SECURITY.UnsafeCookie Generate server-side cookies with adequate security properties

While CrossSiteRequestForgeryis specifically aimed to detect CSRF vulnerabilities, the others are quite

helpful to detect conditions that could be used to exploit a CSRF attack.

OPT.Python.Security.CrossSiteRequestForgery

In web sites developed in Python with Django framework, anti CSRF protection can be enabled for the whole application by including dj
ango.middleware.csrf.CsrfViewMiddleware module in the MIDDLEWARE_CLASSES array within the settings.py config file.

The @csrf_exempt excludes a certain part from the web application from the CSRF validation, creating a potential security hole into the
web application. This is considered a bad programming practice and must be avoided.

This rule checks:

Cross Site Request Forgery

1. If Django is used
a. The middleware django.middleware.csrf.CsrfViewMiddleware (which is enabled by default) must be kept enabled.

b. Controllers shouldn't be decorated with @csrf_exempt, as it disabled the csrf
2. If no protection is found (not using Django CSRF-protection or it’s disabled), a CSRF vulnerability is reported.

Additional Kiuwan rules and notes on CSRF in Python

Beside the specific OPT.Python.Security.CrossSiteRequestForgery rule, Kiuwan provides additional

rules that can check CSRF-related conditions. Pay attention to vulnerabilities found for rules in the

following table.

Na

Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

Rule code
OPT.PYTHON.SECURITY.CrossSiteScripting

OPT.PYTHON.SECURITY.StoredCrossSiteScripting Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

OPT.PYTHON.SECURITY.UnsafeCookie Generate server-side cookies with adequate security properties

[hank you

Try Kiuwan for free
kiuwan.com/free

Contact us:

contact@kiuwan.com
+1 90465123050
Live chat: kiuwan.com

Become a Partner:
partners(@kiuwan.com

kiuwan

