Basic API

This guide explains in-depth the different features for navigating through AST in different ways.
For XPath API, read more here: XPath API

Contents:

Basic navigation: BaseNode and TreeNode

Checking conditions in the nodes: TreeNode and NodePredicate
Navigation within the navigation: TreeNode and NodeVisitor
High-Level AST and Low-Level AST

Basic navigation: BaseNode and TreeNode

In our rule’s visit method, we have access to a BaseNode type object (com.als.core.ast.BaseNode interfa
ce). This object represents the AST root node in which the source code we are analyzing has become,
and it is the starting point from which to seek the information needed to determine whether if the code
shows a violation of the standard to be certified.

To browse through the nodes, we have the TreeNode class (com.als.core.ast.TreeNode), which is an
implementation of BaseNode. Therefore, we can turn our BaseNode nodes into TreeNode and vice versa
at any time.

BaseNode <—> TreeNode conversion

inport com al s. core. AbstractRul e;
import com als. core. Rul eCont ext;
inport com al s. core. ast. BaseNode;

public class MyDumyRul e extends AbstractRule {
@verride
protected void visit (BaseNode root, final RuleContext ctx) {
/1 rule body...

}
}

TreeNode type objects provide us almost unlimited ways to move all along the AST, looking for sibling,
descendant or ancestor of any level nodes and meeting the specific characteristics we want. Among the
most useful methods, we have:

child: it searches between “child” nodes (level 1 descendants of a node).

find: it searches inside the subtree in the current node (level ‘n’ descendants of a node).
parent: it returns the current node’s parent.

ancestor: it searches among all the ancestors of the current node.

rightSibling / leftSibling: it returns the node immediately to the right/left of the current node.

Checking conditions in the nodes: TreeNode and NodePredicate

Other TreeNode objects functionalities, not directly related to navigation, but very useful, are:

® count: it counts the number of nodes of a certain type in the subtree in the current node.

® countAncestors: it counts the number of nodes of certain type among the ancestors of the
current one.

* findlmage: it returns the node image (usually, the concrete item of the source code under
analysis, which is represented by the current node).

® findLine: it returns the number of lines of the node (corresponding to the line number within the
file of the source code under analysis in which the concrete item is, which is represented by the
current node).

® has: it checks if there is a node in the subtree within the current node.

® hasAncestor: it checks if there is a node among the ascendants of the current node.

® hasChildren: it checks if there is a node among the children (level 1 descendants) of the current
node.

® isLeaf / isRoot: it checks if the current node is a leaf or the root node.

® isNull / isNotNull: it checks if the current object is a null node (very useful for testing after search
operations, since those can return TreeNode.NULLTREE, NullNode.NULL o null objects when
they do not find a node that meets the specified conditions).

® isTypeName: it checks the current node’s type.

https://www.kiuwan.com/docs/display/K5/XPath+API

Most search methods allow arguments to establish specific conditions that the nodes to search should
meet. These conditions may be as simple as “the node must be of a certain type” or something like “the
node must be of a certain type, and have a certain image, and be descendant/ancestor of...".

For these cases, we can define a NodePredicate (com.als.core.ast.NodePredicate) object:

NodePredicate sample:

NodePr edi cat e nodeToFi nd = new NodePredi cate {
publi c bool ean i s(BaseNode node) {
TreeNode t Node = TreeNode. on(node);
return t Node. i sTypeNane("Met hodDecl aration") &anp; &np;
t Node. fi ndl mage() . equal s(" net hodNane") &anp; &anp;
t Node. hasAncest or ("I nt erfaceDecl aration");
}
b

@verride
protected void visit (BaseNode root, final RuleContext ctx) {
TreeNode net hodDecl ar = TreeNode. on(root). find(nodeToFi nd);

}

Navigation within the navigation: TreeNode and NodeVisitor

We have already mentioned in Getting Started with Rule Development the visitor strategy, with which we
could go all along an AST nodes from a given one, using the accept methods provided by TreeNode.

Visitor strategy:

inmport com als.core. ast. TreeNode;
inmport comals.core. ast. NodeVisitor;

public class MyDumyRul e extends AbstractRule {
@verride
protected void visit(BaseNode root, final RuleContext ctx) {
/1 this '"visit' is executed on each one of the source code files under
anal ysi s
Tr eeNode. on(root) . accept (new NodeVisitor() {
public void visit(BaseNode node) {
/1 this 'visit' is executed on each one of the nodes in the AST of
the current file under analysis
/1
}
joF
}
}

We can apply the same strategy, using the NodeVisitor objects (com.als.core.ast.NodeVisitor), to any
subtree within the tree we are dealing with:

Applying Visitor:

https://www.kiuwan.com/docs/display/K5/Getting+Started+with+Rule+Development

@verride
public void visit(BaseNode root, final RuleContext ctx) {

final NodeVisitor methodVisitor = new NodeVisitor(){
public void visit(BaseNode node) {
/1 do sonething on an AST which represents a nethod

}
b

Tr eeNode. on(root) . accept (new NodeVi sitor(){
public void visit(BaseNode classDeclar) {
Il search for class or interface declarations
if (!classDeclar.isTypeNanme("Cd assOrlnterfaceDecl aration")) return;
TreeNode clazz = TreeNode. on(cl assDecl ar);
Il traverse clazz/interface searching for nethod decl arations
/1 but avoiding nethods declared in nested cl asses
clazz.child("C assO I nterfaceBody").accept Children(new NodeVisitor() {
// Visitor will visits this node, then its innmedi ate children
public void visit(BaseNode net hodDecl ar) {
TreeNode net hod = TreeNode. on(net hodDecl ar) ;
if (!method. hasChil dren("MethodDecl aration")) return;
/1 apply the 'nethodVisitor' on each nethod found
net hod. accept (net hodVi sitor);
}
1)
}
B
}

High-Level AST and Low-Level AST

You may have noticed, working with Kiuwan Rule Developer, that the nodes types of the generated AST
vary depending on the language of the source code we are analyzing.

This is something you should always keep in mind when developing your rules: each rule will be specific
for the analysis of a particular programming language.

(@ Optimyth Rule Developer
QuQk Qe

B Testsource code _ ool Syntaxtree oo

[m0pen | (@ sieAs | Gnguage [GF) [el]
20 namespace Shimmer.Tests.Client = o
2| public clacs ApplyRelessestests | TenableLogiir _] =

[Serializable]
public class FakeUrlDownloader : IUrlDownloader

fiers

publlic Tobservable<string> DownloadUrl(string url, Iobserve e .
M (dentifier
n

progress = progress ?? new Subject<int>();
progress.Onliext(100);
progress.onCompleted();
return Observable.Return("");

public I0bservablecunit> QueueBackgrounddownloads (IEnumerab:
progress = progress ?? new Subject<int>();
progress. Oniext(100);

progress.onCompleted();
return Observable.Return(Unit.Default);

ract)
public void ApplyReleasesuithonerelesserile() 4

d I D
Sesch | % |[% | [IRegusrespressons []Cosesensiie

Compilation: 1125 ms optimyth

The nodes that Kiuwan Rule Developer shows us by default are the low-level nodes, Low-Level AST,
which show in detail each one of the processed code elements. However, for certain rules, perhaps it is
not necessary so much detail and it would be enough with somewhat higher abstraction.

Therefore, with certain technologies (Java, C++, C#, Cobol, Javascript), we can access the high-level
nodes, High-Level AST, representing elements to a less detailed level. To see one level of abstraction or
the other, in Kiuwan Rule Developer's Syntax Tree tab, we can find Full Tree and Summarized Tree optio
ns (only available in those technologies that support them).

https://www.kiuwan.com/wp-content/uploads/2017/05/021.jpg

Create, manage, and run configurations. ﬁ\ |
;i ' ;

Mame KiuwanRuleDeveloperhemeteDetug

5 Source) [1] Common,

Applet
) Jovs Application

! - fowe. |
it Miven Bidd =
o Connecton Type:
o ¢ , !
Jyy Task Comet Test Conngetion Propesties:

Hest: locanazt
Port 4144
7] il termination of remate VM

Fiter matched 7 of 7 items

@

With ASTSwitcher (com.optimyth.qgaking.highlevelapi.ast.util. ASTSwitcher) utility, we can convert low-
level nodes into high-level ones and vice versa.

Low-Level AST <—> High-Level AST conversion

protected void visit (BaseNode root, final RuleContext ctx) {

TreeNode | owLevel Node = TreeNode.on(root); // BaseNode to TreeNode
TreeNode hi ghLevel Node = ASTSwi t cher. get Hi ghLevel Node(| owLevel Node) ;
| omLevel Node = ASTSwi t cher. get LowlLevel Node(hi ghLevel Node) ;

https://www.kiuwan.com/wp-content/uploads/oldblog/2015/05/03.jpg
https://www.kiuwan.com/wp-content/uploads/oldblog/2015/05/03.jpg
https://www.kiuwan.com/wp-content/uploads/oldblog/2015/05/03.jpg

	Basic API

