
Understanding Data-Flow Vulnerabilities
This section explains in detail how you can undestand a vulnerabilty as reported by Kiuwan.

Contents:

Tainted Flow Analysis
How to understand tainted-flow vulnerabilities

Finding Vulnerabilities
Graphical view of sources and sinks
Finding sources and sinks

Detailed information of a sink
Source's detailed information

Propagation Path
Data path
Configuration (parametersAsSources)

Why should you change it to true ?

The explanation is focused on injection-related vulnerabilities, as an example of complex vulnerabilities.

We will first provide an overview of Tainted Flow Analysis (the theoretical basis behind the scenes),
and then we will focus on Kiuwan vulnerability reporting.

Tainted Flow Analysis

The root cause of many security breaches is trusting unvalidated input:. This could be:

Input from the user, which could be considered as tainted (possibly controlled by an adversary),
untrustedi.e user is considered as an source

Data, assuming it is untainted (must not be controlled by an adversary), i.e. sensitive data sinks
rely on trusted (untainted) data

The goal of Tainted Flow Analysis is to detect tainted data flows:

Prove, for all possible sinks, that tainted data will never be used where untainted data is expected.

When inferring flows from an untainted sink to a tainted source, Kiuwan can detect if any well-known sanit
izer is used, dropping those flows and thus avoiding to raise false vulnerabilities.

Kiuwan contains a built-in library of sanitizers for every supported programming language and framework.

These sanitizers are commonly used directly by programmers or by frameworks. And Kiuwan detects
their use.

How to understand tainted-flow vulnerabilities

Vulnerabilities are reported under Code Security > Vulnerabilities.

Source locations are those code places from where data comes in, that can be potentially
controlled by the user (or the environment) and must consequently be presumably considered
as tainted (it may be used to build injection attacks).

Sink locations are those code places where consumed data must not be tainted.

Kiuwan implements Tainted Flow Analysis by inferring flows in the source code of your
application:

What sinks sources are reached by what
If any flows are illegal, i.e., whether a tainted source may flow to an untainted sink
without going across a sanitizer

Finding Vulnerabilities

For our explanation, we will follow an example based on Waratek – Spiracle software, focusing on SQL
injection vulnerabilities.

Search for the SQL injection vulnerabilities by entering " " in the field.SQL Search by rule name

In this image, we can see that 2 files are affected: there is a sink that is being fed tainted data. An injectio
. n point

For every file there are a number of vulnerabillities:

Graphical view of sources and sinks

Every vulnerability offers the possibility to view a graph view of all the propagation paths for this item.

Click the icon on the right:

The following graph will open:

All the vulnerabilities of the same type (i.e. coming from the same Kiuwan rule that checks for
it) are grouped under the Kiuwan rule name, indicating how many files are affected and how
many vulnerabilities were found.

Tainted data flows are represented as from sources (at the top) to sinks (at the bottom). directed graphs

Any element may have a number that indicates in how many tainted data flows it participates.

You can see the detail of any element (source, sink or propagation node) by hovering the mouse overt it.
A dialog will be displayed as in the image below:

Finding sources and sinks

In this case, there’s only one sink for every file (only one injection point), but it could be many. Kiuwan
will display all the line numbers of the affected sinks.

If you want to see a of all the sources, sinks and tainted data flows for you can also graphical view a file
click on the icon.

And the following graph will be displayed:

Clicking on the affected file will open all its affected sinks.

Clicking a sink displays its details as well as all the sources where data is collected from an untrusted
source and flows to the sink without being neutralized (or sanitized).

Detailed information of a sink

Most commonly, every source will be a different file. But depending on the flow path, you could find same
source and line many times.

Let’s see how to understand every source.

Source's detailed information

Clicking on a source will open a frame with its detailed information.

Sink data

The sink details include the following information:

Specific CWE, related vulnerability as defined by CWE (hyperlink to definition at
MITRE)
Sink Data

Category (vulnerability type, e.g. sql_injection, xss, etc)
Resource (affected resource, e.g. database, web, etc.)
Container (function/method where the sink is located)
Injection point (tainted data, i.e. variable name)
Variable declaration (tainted variable declaration)
Source code line and text of sink
List of Sources

Full list of sources with tainted-flow paths ending in the sink
Every row indicates the source file and line where data coming
from an untrusted source flows to the sink without being
neutralized (or sanitized).

Propagation Path

Let’s look at the following example:

You can also view it in graphical mode:

In the example, we can see the next propagation path (flowing from source to sink):

Source data

Source detail includes following information:

Category (source type, e.g. user_input, , etc)
Resource (resource where the data is gathered, e.g. web, etc.)
Container (function/method where the source is located)
Source code line and text of sink
Propagation path (data-flow between the source and sink)

Propagation Path

Important: You should not understand the as a typical stack of method propagation path
calls. It’s not that.

You should understand it as a .data-flow path

Any is composed of a , a and as many propagation path source node sink node propagatio
 as different methods are involved in the propagation path.n nodes

The source node indicates that the file line 32 (within ParameterNullFix.java sanitizeNull
method) gets the value from a request parameter.

This is marked a because is considered source HttpServletRequest.getParameter(..)
as an untrusted input source (i.e. is directly manipulated by the user) and no
neutralization routine has been found.

The first propagation node indicates that line 68 receives back the above Delete_User.java
tainted data.
The second propagation node indicates that line 75 sends the tainted data Delete_User.java
(via method parameter) to another object through method call. UpdateUtil.executeUpdate(…)

Looking at the source code, you could see that the tainted data is directly appended to
a sql string without any neutralization, allowing this way to directly insert user code into
the sql sentence.

The sink node indicates that the file line 61 (within method) UpdateUtil.java executeUpdate(…)
injects tainted data (sql sentence) to a PreparedStatement that finally is executed against the
database.

Let’s go back to the initial sink information.

As said above, for every sink there will appear the list of sources that are “feeding” that sink.

But you might be wondering why there are 5 sources with the same file name and line.

We’ve selected this specific example to show something that could happen in your own code. Let’s
explore the second source into detail.

In the 2 source you can see that the propagation nodes are different from the previous one.nd

While in the 1 the propagation it was through , in the 2 , it goes through a different st Delete_User.java nd

file: Insert_Raw_Text.java.

Reminder sources for the same sink show that there are still other different propagation paths between
the same source and the sink.

This example is a special case where the call sequence consists of 5 servlets calling a utility (ParameterN
) to recover some request parameters, building an SQL sentence with this tainted ullFix.sanitizeNull(..)

data and sending the SQL sentence to another utility () to execute the UpdateUtil.executeUpdate(…)
database update.

This is the reason Kiuwan shows one sink with 5 different sinks. That difference is because the
propagation paths are through the different servlets. In this case, the easiest fix would be to sanitize the
user data at the source, therefore remediating 5 found defects with only one fix.

Data path

A vulnerability's data path information is complementary to its propagation path. Although they may
similar, the data path adds detailed information on how the data flows through your code making it
vulnerable.

Let us inspect the data path corresponding to the example shown in the section:Propagation path

The data path shown in the example consists of (from source to sink):

The container step shows the method where the user input is first detected in the analyzed
source code. In this case, the parameter contains user input data.request
The source step reports how the new variable is initialized retrieving data from the val request
parameter, so Kiuwan considers it a tainted variable.
In the next step the variable is assigned to another object. In this case, the object val outputMap
is tainted because it contains input data that has not been sanitized.
This map is then returned to the calling method, that is reported in the next step and belongs to
a different file ().Delete_user.java
The next step shows how the returned map is then inspected to get a key that has been tainted.
The variable is tainted and is injected into a query in the next step.name
The created string object is then sent to a method located in .sql UpdateUtil.java
Once inside the method (which has been identified as the sink of the vulnerability), the tainted
variable is used to construct the prepared statement that will be executed (and it contains sql
data in which a user could have injected mailicious code).

Configuration (parametersAsSources)

If , the rule performs a tainting path analysis to check if the parameters are parametersAsSources=true
neutralized since being received by the function/method until are consumed by the sink. If no
neutralization is found, an injection vulnerability is raised. , By default parametersAsSources=false.

Why should you change it to true ?

As a summary, you can understand any injection vulnerability as a unique propagation path
from source to sink, regardless of whether source and sink are the same.

A is composed of a series of steps that show how tainted data flows through the data path
source code.

Some injection rules provide the ability to behave differently depending on a configuration
parameter: parametersAsSources

This parameter makes the rule to consider the function/method parameters where the sink is
contained as " ". And sources are always being considered as "tainted".sources

If your software being analyzed by Kiuwan is a complete application (i.e. it contains presentation plus
logic and ddbb layers), you should let it be as false. In this way, Kiuwan will make a full tanting path
analysis over the whole application code.

But, if your software is a "library", i.e. a software component that will be used by 3rd parties to build their
own applications, making Kiuwan perform that local you should configure this property to true,
tainting path analysis, thus guaranteeing that your library is protected against injection vulnerabilities
regardless the usage by third parties.

As you can guess, setting to true and analyzing a complete application will result in a number of false
positives.

	Understanding Data-Flow Vulnerabilities

