
Models and CQM
This page introduces and explains Kiuwan Models and the concept of CQM (Checking Quality Model). 

Contents: 

Introduction to CQM
What is CQM?
Why CQM?
ISO-25000 based
CQM benefits

The CQM methodology principles
Structured model layer
Source code indicators layer
Technology indicators layer
Software characteristics indicators layer

Static Analysis in Automated Software Quality Tests
Reliability
Efficiency
Maintainability
Portability
Global indicator layer: CQM indicator

Understanding indicators
Comparison and evolution

Kiuwan offers the ability to manage models associated with the analyses carried out on the applications 
via the management utility, .Models Manager

To analyze an application, it is necessary to have and configure a . This is not an easy task. It Model
requires minimum knowledge of the repository of hundreds of rules that help you validate the code and 
how to select and parameterize them. Configuring details for other Kiuwan indicators is also needed to 
fine-tune your analysis. Although these are complex tasks, Kiuwan helps you all the way with useful tools 
to narrow your needs.

Introduction to CQM 

What is CQM?

CQM is a model for extracting analytics of a software product, designed by Kiuwan and available 
'out-of-the-box' so that users can begin to analyze their code immediately. Once the methodology behind 
code certification is well known, users are able to "calibrate" their own models, creating them from 
scratch or from other existing models.

Before using it, let's introduce the concepts and methodology behind CQM, then, go into the details of 
the elements that compose a model in Kiuwan: Indicators, Rules, and Metrics.

Why CQM?

Kiuwan has a deep experience advising its customers to get better in software development. Kiuwan has 
noticed that its customers have common troubles and interests, so there was the need of defining a 
methodology that was supported by tools, products, and solutions. This methodology must guarantee 
that the solution adopted will provide the target benefits and will resolve the most common troubles. 
Having a defined methodology saves time and money in the software development process of these 
companies. When you cut time in implementation, you get extra benefits because you minimize the risks 
that surround this kind of project: long projects are risky ones.

ISO-25000 based



CQM is ISO-25000 based. It defines internal quality scope and characteristics. This standard provides a 
set of concepts in order to build a common language about quality.
ISO-25000 defines three techniques of validation for software products:

Internal Quality is the set of characteristics of the software product from an internal view. 
Internal quality is measured and evaluated against the internal quality requirements. Details of 
software product quality can be improved during code implementation, reviewing and testing.
External Quality is the set of characteristics of the software product from an external view. It is 
the quality when the software is executed, which is typically measured and evaluated while 
testing in a simulated environment with simulated data using external metrics.
Quality in Use is the user's view of the quality of the software product when it is used in a 
specific environment and a specific context of use. It measures the extent to which users can 
achieve their goals in a particular environment.

CQM benefits

CQM provides software analytics that allow to:

Abstract from the technical layer. Your information will be independent of program languages 
and platforms.
Compare different versions of the same software. This answers the most important question: 
has my software improved?
Compare different applications. It does not matter if they are different kinds of applications or 
they are developed in different technologies.
Evaluate the technical requirements in order to accept the software from a third-party provider.

And other benefits:

Aggregation of data. You can aggregate the information from different applications in order to 
get an evaluation of the software produced by a provider, a country or IT area compared to 
others.
Continuous improvement process. You can apply a control methodology in your software life 
cycle process.

The CQM methodology principles

Structured model layer

The CQM methodology extracts evidence from the software's code and configuration. The process 
continues upwards in order to obtain technology-independent indicators to build evolution, comparators, 
and aggregations.

Source code indicators layer

This layer is responsible for reading the source code and extracting technical evidence. It has to classify 
this evidence in order to analyze it. In this step, you have to prioritize the evidence found, to distinguish 
what is critical, major, low or informative. It defines the required level.

Technology indicators layer

It can be based on different categories according to the technology. (For example, you are not going to 
get usability defects in PL/SQL source code, because this language does not concern itself with the user 
layer nor the presentation layer.)

So you have to define technology categories for the evidence found in the previous layer and aggregate 
it using the priorities based on the severity of the problem. These categories must be defined by thinking 
about the software characteristics of the next layer. For example, the group of evidence related to 
threads or parallelization affects software efficiency.
The output of this layer is the technical indicator that allow you to compare software based on the same 
technology.

Software characteristics indicators layer

This layer standardizes the indicators generated in the previous layer to get one normalized indicator for 
each software characteristics defined by . CQM implements ISO 25000 focusing on ISO 25000 standard
internal quality. In order to provide indicators that correlate with the software characteristic, CQM 
proposes the following indicators:

Security. The capability of the software product to protect information and data so that 
unauthorized persons or systems cannot read or modify them and authorized persons or 
systems are not denied access to them.
Reliability. The capability of the software product to maintain a specified level of performance.



Efficiency. The capability of the software product to provide appropriate performance relative to 
the number of resources used under stated conditions.
Maintainability. The capability of the software product to be modified. Modifications may 
include corrections, improvements, or adaptability of the software to changes in the environment 
and in requirements and functional specifications.
Portability. The capability of the software product to be transferred from one environment to 
another.

At this point you have technology-independent software indicators that allow you to analyze your 
application; even if you do not have specific technical knowledge.

Static Analysis in Automated Software Quality Tests

Software quality management solutions function with automated tests that use     processtatic analysis
ses to generate  .software quality metrics

With the ability to parse code in  ,     is almost every commonly used programming language static analysis
useful in assessing a key set of five software quality indicators: software system security, code reliability, 
code memory usage and efficiency, maintainability, and portability.

These indicators represent the most significant aspects of high-quality code, and it’s important for 
developers and investors to monitor the metrics that     generate to ensure they are static analyses
producing secure, reliable, maintainable, portable, and scalable code.

Security
Static   looks for security vulnerabilities in source code by referencing the most common analysis
vulnerabilities as defined by  .OWASP

The parser is able to monitor code for vulnerabilities to data injection by looking at any queries or 
command statements that take input from users. It checks to see that every instance of user input is 
properly prepared to avoid data injection. If the code does not properly separate user input from data 
structures, the parser will report a vulnerability.

A     engine looks at authentication vulnerabilities by checking that the code protects user static analysis
authentication credentials by hashing or encrypting the stored authentication information. It looks for 
weak account management functions, such as password recovery processes, for simple password 
overwriting vulnerabilities. It verifies that the source code hides URL authentication information via URL 
rewriting algorithms and looks at session timeout procedures that often produce vulnerabilities to session 
fixation attacks.

When scanning for security vulnerabilities, the     algorithm tags structures that contain static analysis
sensitive data and verifies that all direct references to these objects require authentication for data to be 
passed to the caller. Similarly, the parser looks at indirect references to sensitive data objects and the 
data mapping process to ensure that the call requires user authentication. When the parser locates an 
instance of potential vulnerability, it will tag and report the instance and include it in a security metrics 
report.   scanning through all of the most common types of software vulnerabilities, it will generate a After
report that references all potential vulnerabilities it has identified.

Reliability

Static   is especially apt at looking at the reliability of all modules and methods of software.analysis

The source of reliability in code is the ability to produce a predictable outcome given wildly varying inputs. 
In    , the parser identifies specific methods and isolates them, emulating their behavior when static analysis
ported into other software modules. Once isolated, the algorithm will generate arguments and read 
method outputs, expecting the outputs to contain specific information and formatting. It will raise flags for 
any anomalies in a method.

The algorithm will then aggregate anomalies and generate a report that points to specific methods that 
compromise reliability.

Efficiency

The efficiency of code is largely dictated by memory usage and data flow.

When performing    , the memory usage of a program is not explicitly readable. By definition, static analysis
   is performed on code without actually instantiating an interpreter; thus, the parser needs to static analysis

infer memory usage by looking at the code and data structures.

A common source of code inefficiency calls for entire data sets to be stored in active memory. This is 
especially common in legacy code and in systems initially developed for small data sets. The   static analys

https://www.kiuwan.com/docs/display/K5/Metrics
https://www.kiuwan.com/docs/display/K5/Kiuwan+Supported+Technologies
https://www.owasp.org/index.php/Main_Page


 algorithm looks for any such explicit calls to store data sets in memory and reports them. It will also is
look for cases of lingering data stored in active memory – any call for data to be stored in active memory 
will prompt a search for a call to drop that data from memory   working and updating a database.after

The report will suggest an iterative alternative approach to carrying out a memory-intensive task, but it’s 
important for a knowledgeable developer to look at such reports. Some explicit calls to stored data sets in 
memory are necessary and entirely manageable if, for example, the data set is known to be small (such 
as metadata).

Static   procedures will also identify duplicate code and multiple calls to commit the same data to analysis
memory simultaneously.

In most cases, the     of source code will reveal and report important sources of software static analysis
inefficiencies. It’s especially illuminating when working with extensive legacy code and data structures 
that weren’t initially designed to be scalable.

Maintainability

The maintainability of code is closely related to the complexity of code. If the source code is overly 
complex, it can be difficult to make changes and incorporate new functions and modules quickly.

Thus, the     protocol looks for sources of code complexity to generate metrics that quantify static analysis
code maintainability.

A source of program complexity that is easy for a parser to identify is duplicate code in sibling classes. If 
certain classes share a parent and share explicitly defined methods, the code is overly complicated – the 
two classes could inherit their shared method from a parent class. A parser can easily identify such 
cases by looking for duplicate methods.

Another source of complexity, method side-effects, are easy for   analyzers to look at. By parsing the static
arguments, output, instances, and the method code, the algorithm can find methods that create 
complications by implicitly affecting data flow.

By quantifying program complexity, a     report helps developers look at the maintainability of static analysis
their code and improve it by pointing to specific sources of complexity.

Portability

A     report gives insight into the portability of source code by isolating and testing methods. static analysis
Deprived of their native environments, the parser can predict how well methods would perform if ported.

Much as with reliability and maintainability, the portability of code lies in its complexity. The complexity 
metrics that a static analysis generates help developers quantify the portability of their code.

It’s important to understand the function of     in any automated software quality test. It’s a static analysis
wonderful tool, but developers should understand its strengths and limitations.

Global indicator layer: CQM indicator

At the end of the quality process, you will get ONE standard and normalized indicator per software unit. 
Using this indicator you can extrapolate to evaluate groups of software applications; for example, 
evaluations of software providers, its areas and developers teams, etc.

Understanding indicators

An indicator can be defined as something that helps us to understand where we are, where we are going 
and how far we are from the goal. Therefore, it can be a sign, a number or a graphic and so on. It must 
be a clue or a pointer to something that is changing. Indicators are presentations of measurements. They 
are bits of information that summarize the characteristics of systems or highlight what is happening in a 
system.

CQM indicators are normalized to represent these regions:

0-30 region. The characteristic pointed to by the indicator is in the RED zone. Improvements are 
needed.
30-70 region. Represented by YELLOW and means that you have to keep your mind on this 
indicator. Your next moves will depend on your requirements.
70-100 region. The GREEN zone. This is the zone where all indicators must be. No critical 
defects found. 



Comparison and evolution

This normalization allows the comparison of different characteristics between them; this means that you 
can say if the software is more maintainable than it is efficient or reliable. You are going to compare 
different versions of the same application over time because the meaning of the indicator does not 
change.


	Models and CQM

